Abstract

We study the coupling interactions between a progressively elongated silver nanoparticle and a silver film on a glass substrate. Specifically, we investigate how the coupling between localized surface plasmons (LSPs) and propagating surface plasmon polaritons (SPPs) is influenced by nanoparticle length. Although the multiple resonances supported by the nanoparticle are effectively standing wave surface plasmons, their interaction with the SPP continuum of the underlying Ag film indicates that their spectral response is still localized in nature. It is found that these LSP–SPP interactions are not limited to small particles, but that they are present as well for extremely long particles, with a transition to the SPP coupling interactions of a bilayer metallic film system beginning at a particle length of approximately 5 μm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription