Abstract

We study the coupling interactions between a progressively elongated silver nanoparticle and a silver film on a glass substrate. Specifically, we investigate how the coupling between localized surface plasmons (LSPs) and propagating surface plasmon polaritons (SPPs) is influenced by nanoparticle length. Although the multiple resonances supported by the nanoparticle are effectively standing wave surface plasmons, their interaction with the SPP continuum of the underlying Ag film indicates that their spectral response is still localized in nature. It is found that these LSP–SPP interactions are not limited to small particles, but that they are present as well for extremely long particles, with a transition to the SPP coupling interactions of a bilayer metallic film system beginning at a particle length of approximately 5 μm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
    [CrossRef]
  2. B. Sepulveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, Nano Today 4(3), 244 (2009).
    [CrossRef]
  3. W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, J. Phys. Chem. C 113, 14672 (2009).
    [CrossRef]
  4. D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, Nat. Nanotechnol. 6, 452 (2011).
    [CrossRef]
  5. M. Kauranen and A. V. Zayats, Nat. Photonics 6, 737 (2012).
    [CrossRef]
  6. K. Thyagarajan, S. Rivier, A. Lovera, and O. J. F. Martin, Opt. Express 20, 12860 (2012).
    [CrossRef]
  7. P. Nordlander and E. Prodan, Nano Lett. 4, 2209 (2004).
    [CrossRef]
  8. F. Le, N. Z. Lwin, N. J. Halas, and P. Nordlander, Phys. Rev. B 76, 165410 (2007).
    [CrossRef]
  9. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
    [CrossRef]
  10. T. Sondergaard and S. I. Bozhevolnyi, Phys. Rev. B 69, 045422 (2004).
    [CrossRef]
  11. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
    [CrossRef]
  12. W. R. Holland and D. G. Hall, Phys. Rev. B 27, 7765 (1983).
    [CrossRef]
  13. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, Opt. Lett. 30, 3404 (2005).
    [CrossRef]
  14. G. Lévêque and O. J. F. Martin, Opt. Express 14, 9971 (2006).
    [CrossRef]
  15. N. Papanikolaou, Phys. Rev. B 75, 235426 (2007).
    [CrossRef]
  16. J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, Opt. Express 15, 10533 (2007).
    [CrossRef]
  17. A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, J. Microsc. 229, 344 (2008).
    [CrossRef]
  18. G. Lévêque and R. Quidant, Opt. Express 16, 22029 (2008).
    [CrossRef]
  19. Y. Chu and K. B. Crozier, Opt. Lett. 34, 244 (2009).
    [CrossRef]
  20. D. Brunazzo, E. Descrovi, and O. J. F. Martin, Opt. Lett. 34, 1405 (2009).
    [CrossRef]
  21. J. DiMaria and R. Paiella, J. Appl. Phys. 111, 103102 (2012).
    [CrossRef]
  22. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  23. M. Paulus and O. J. F. Martin, Phys. Rev. E 63, 066615 (2001).
    [CrossRef]
  24. A. Farhang and O. J. F. Martin, Opt. Express 19, 11387 (2011).
    [CrossRef]
  25. A. Ghoshal and P. G. Kik, J. Appl. Phys. 103, 113111 (2008).
    [CrossRef]
  26. A. Ghoshal, I. Divliansky, and P. G. Kik, Appl. Phys. Lett. 94, 171108 (2009).
    [CrossRef]
  27. S. Dutta-Gupta and O. J. F. Martin, J. Appl. Phys. 110, 044701 (2011).
    [CrossRef]
  28. B. E. A. Saleh and M. C. Teich, “Guided-wave optics,” in Fundamentals of Photonics (Wiley, 2001), pp. 238–271.
  29. D. Pozar, Microwave Engineering (Wiley, 1997).
  30. J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, Phys. Rev. B 79, 8 (2009).

2012 (3)

M. Kauranen and A. V. Zayats, Nat. Photonics 6, 737 (2012).
[CrossRef]

K. Thyagarajan, S. Rivier, A. Lovera, and O. J. F. Martin, Opt. Express 20, 12860 (2012).
[CrossRef]

J. DiMaria and R. Paiella, J. Appl. Phys. 111, 103102 (2012).
[CrossRef]

2011 (3)

A. Farhang and O. J. F. Martin, Opt. Express 19, 11387 (2011).
[CrossRef]

S. Dutta-Gupta and O. J. F. Martin, J. Appl. Phys. 110, 044701 (2011).
[CrossRef]

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, Nat. Nanotechnol. 6, 452 (2011).
[CrossRef]

2009 (6)

B. Sepulveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, Nano Today 4(3), 244 (2009).
[CrossRef]

W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, J. Phys. Chem. C 113, 14672 (2009).
[CrossRef]

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, Phys. Rev. B 79, 8 (2009).

A. Ghoshal, I. Divliansky, and P. G. Kik, Appl. Phys. Lett. 94, 171108 (2009).
[CrossRef]

Y. Chu and K. B. Crozier, Opt. Lett. 34, 244 (2009).
[CrossRef]

D. Brunazzo, E. Descrovi, and O. J. F. Martin, Opt. Lett. 34, 1405 (2009).
[CrossRef]

2008 (4)

A. Ghoshal and P. G. Kik, J. Appl. Phys. 103, 113111 (2008).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[CrossRef]

A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, J. Microsc. 229, 344 (2008).
[CrossRef]

G. Lévêque and R. Quidant, Opt. Express 16, 22029 (2008).
[CrossRef]

2007 (3)

N. Papanikolaou, Phys. Rev. B 75, 235426 (2007).
[CrossRef]

J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, Opt. Express 15, 10533 (2007).
[CrossRef]

F. Le, N. Z. Lwin, N. J. Halas, and P. Nordlander, Phys. Rev. B 76, 165410 (2007).
[CrossRef]

2006 (1)

2005 (2)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
[CrossRef]

J. Cesario, R. Quidant, G. Badenes, and S. Enoch, Opt. Lett. 30, 3404 (2005).
[CrossRef]

2004 (2)

T. Sondergaard and S. I. Bozhevolnyi, Phys. Rev. B 69, 045422 (2004).
[CrossRef]

P. Nordlander and E. Prodan, Nano Lett. 4, 2209 (2004).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef]

2001 (1)

M. Paulus and O. J. F. Martin, Phys. Rev. E 63, 066615 (2001).
[CrossRef]

1983 (1)

W. R. Holland and D. G. Hall, Phys. Rev. B 27, 7765 (1983).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Angelome, P. C.

B. Sepulveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, Nano Today 4(3), 244 (2009).
[CrossRef]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[CrossRef]

Badenes, G.

Barnes, W. L.

Bauer, C.

A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, J. Microsc. 229, 344 (2008).
[CrossRef]

Bozhevolnyi, S. I.

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, Phys. Rev. B 79, 8 (2009).

T. Sondergaard and S. I. Bozhevolnyi, Phys. Rev. B 69, 045422 (2004).
[CrossRef]

Brunazzo, D.

Cesario, J.

Cheylan, S.

Christ, A.

A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, J. Microsc. 229, 344 (2008).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Chu, Y.

Crozier, K. B.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef]

Descrovi, E.

DiMaria, J.

J. DiMaria and R. Paiella, J. Appl. Phys. 111, 103102 (2012).
[CrossRef]

Divliansky, I.

A. Ghoshal, I. Divliansky, and P. G. Kik, Appl. Phys. Lett. 94, 171108 (2009).
[CrossRef]

Dutta-Gupta, S.

S. Dutta-Gupta and O. J. F. Martin, J. Appl. Phys. 110, 044701 (2011).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef]

Enoch, S.

Farhang, A.

Fischer, H.

W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, J. Phys. Chem. C 113, 14672 (2009).
[CrossRef]

Ghoshal, A.

A. Ghoshal, I. Divliansky, and P. G. Kik, Appl. Phys. Lett. 94, 171108 (2009).
[CrossRef]

A. Ghoshal and P. G. Kik, J. Appl. Phys. 103, 113111 (2008).
[CrossRef]

Giessen, H.

A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, J. Microsc. 229, 344 (2008).
[CrossRef]

Gonzalez, M. U.

Halas, N. J.

F. Le, N. Z. Lwin, N. J. Halas, and P. Nordlander, Phys. Rev. B 76, 165410 (2007).
[CrossRef]

Hall, D. G.

W. R. Holland and D. G. Hall, Phys. Rev. B 27, 7765 (1983).
[CrossRef]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[CrossRef]

Holland, W. R.

W. R. Holland and D. G. Hall, Phys. Rev. B 27, 7765 (1983).
[CrossRef]

Hwang, J.-H.

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, Nat. Nanotechnol. 6, 452 (2011).
[CrossRef]

Jeon, K.-S.

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, Nat. Nanotechnol. 6, 452 (2011).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Jung, J.

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, Phys. Rev. B 79, 8 (2009).

Kauranen, M.

M. Kauranen and A. V. Zayats, Nat. Photonics 6, 737 (2012).
[CrossRef]

Kik, P. G.

A. Ghoshal, I. Divliansky, and P. G. Kik, Appl. Phys. Lett. 94, 171108 (2009).
[CrossRef]

A. Ghoshal and P. G. Kik, J. Appl. Phys. 103, 113111 (2008).
[CrossRef]

Kim, H.

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, Nat. Nanotechnol. 6, 452 (2011).
[CrossRef]

Kuhl, J.

A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, J. Microsc. 229, 344 (2008).
[CrossRef]

Kwon, S.

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, Nat. Nanotechnol. 6, 452 (2011).
[CrossRef]

Le, F.

F. Le, N. Z. Lwin, N. J. Halas, and P. Nordlander, Phys. Rev. B 76, 165410 (2007).
[CrossRef]

Lechuga, L. M.

B. Sepulveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, Nano Today 4(3), 244 (2009).
[CrossRef]

Lévêque, G.

G. Lévêque and R. Quidant, Opt. Express 16, 22029 (2008).
[CrossRef]

A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, J. Microsc. 229, 344 (2008).
[CrossRef]

G. Lévêque and O. J. F. Martin, Opt. Express 14, 9971 (2006).
[CrossRef]

Lim, D.-K.

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, Nat. Nanotechnol. 6, 452 (2011).
[CrossRef]

Liz-Marzan, L. M.

B. Sepulveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, Nano Today 4(3), 244 (2009).
[CrossRef]

Lovera, A.

Lwin, N. Z.

F. Le, N. Z. Lwin, N. J. Halas, and P. Nordlander, Phys. Rev. B 76, 165410 (2007).
[CrossRef]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[CrossRef]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
[CrossRef]

Martin, O. J. F.

K. Thyagarajan, S. Rivier, A. Lovera, and O. J. F. Martin, Opt. Express 20, 12860 (2012).
[CrossRef]

A. Farhang and O. J. F. Martin, Opt. Express 19, 11387 (2011).
[CrossRef]

S. Dutta-Gupta and O. J. F. Martin, J. Appl. Phys. 110, 044701 (2011).
[CrossRef]

D. Brunazzo, E. Descrovi, and O. J. F. Martin, Opt. Lett. 34, 1405 (2009).
[CrossRef]

W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, J. Phys. Chem. C 113, 14672 (2009).
[CrossRef]

A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, J. Microsc. 229, 344 (2008).
[CrossRef]

G. Lévêque and O. J. F. Martin, Opt. Express 14, 9971 (2006).
[CrossRef]

M. Paulus and O. J. F. Martin, Phys. Rev. E 63, 066615 (2001).
[CrossRef]

Nam, J.-M.

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, Nat. Nanotechnol. 6, 452 (2011).
[CrossRef]

Nordlander, P.

F. Le, N. Z. Lwin, N. J. Halas, and P. Nordlander, Phys. Rev. B 76, 165410 (2007).
[CrossRef]

P. Nordlander and E. Prodan, Nano Lett. 4, 2209 (2004).
[CrossRef]

Paiella, R.

J. DiMaria and R. Paiella, J. Appl. Phys. 111, 103102 (2012).
[CrossRef]

Papanikolaou, N.

N. Papanikolaou, Phys. Rev. B 75, 235426 (2007).
[CrossRef]

Paulus, M.

M. Paulus and O. J. F. Martin, Phys. Rev. E 63, 066615 (2001).
[CrossRef]

Pozar, D.

D. Pozar, Microwave Engineering (Wiley, 1997).

Prodan, E.

P. Nordlander and E. Prodan, Nano Lett. 4, 2209 (2004).
[CrossRef]

Quidant, R.

Rivier, S.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, “Guided-wave optics,” in Fundamentals of Photonics (Wiley, 2001), pp. 238–271.

Schmid, T.

W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, J. Phys. Chem. C 113, 14672 (2009).
[CrossRef]

Sepulveda, B.

B. Sepulveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, Nano Today 4(3), 244 (2009).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
[CrossRef]

Sondergaard, T.

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, Phys. Rev. B 79, 8 (2009).

T. Sondergaard and S. I. Bozhevolnyi, Phys. Rev. B 69, 045422 (2004).
[CrossRef]

Suh, Y. D.

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, Nat. Nanotechnol. 6, 452 (2011).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, “Guided-wave optics,” in Fundamentals of Photonics (Wiley, 2001), pp. 238–271.

Thyagarajan, K.

Tikhodeev, S. G.

A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, J. Microsc. 229, 344 (2008).
[CrossRef]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[CrossRef]

Zayats, A. V.

M. Kauranen and A. V. Zayats, Nat. Photonics 6, 737 (2012).
[CrossRef]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
[CrossRef]

Zenobi, R.

W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, J. Phys. Chem. C 113, 14672 (2009).
[CrossRef]

Zentgraf, T.

A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, J. Microsc. 229, 344 (2008).
[CrossRef]

Zhang, W.

W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, J. Phys. Chem. C 113, 14672 (2009).
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

A. Ghoshal, I. Divliansky, and P. G. Kik, Appl. Phys. Lett. 94, 171108 (2009).
[CrossRef]

J. Appl. Phys. (3)

S. Dutta-Gupta and O. J. F. Martin, J. Appl. Phys. 110, 044701 (2011).
[CrossRef]

J. DiMaria and R. Paiella, J. Appl. Phys. 111, 103102 (2012).
[CrossRef]

A. Ghoshal and P. G. Kik, J. Appl. Phys. 103, 113111 (2008).
[CrossRef]

J. Microsc. (1)

A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, J. Microsc. 229, 344 (2008).
[CrossRef]

J. Phys. Chem. C (1)

W. Zhang, H. Fischer, T. Schmid, R. Zenobi, and O. J. F. Martin, J. Phys. Chem. C 113, 14672 (2009).
[CrossRef]

Nano Lett. (1)

P. Nordlander and E. Prodan, Nano Lett. 4, 2209 (2004).
[CrossRef]

Nano Today (1)

B. Sepulveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, Nano Today 4(3), 244 (2009).
[CrossRef]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
[CrossRef]

Nat. Nanotechnol. (1)

D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, Nat. Nanotechnol. 6, 452 (2011).
[CrossRef]

Nat. Photonics (1)

M. Kauranen and A. V. Zayats, Nat. Photonics 6, 737 (2012).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
[CrossRef]

Phys. Rev. B (6)

W. R. Holland and D. G. Hall, Phys. Rev. B 27, 7765 (1983).
[CrossRef]

T. Sondergaard and S. I. Bozhevolnyi, Phys. Rev. B 69, 045422 (2004).
[CrossRef]

N. Papanikolaou, Phys. Rev. B 75, 235426 (2007).
[CrossRef]

F. Le, N. Z. Lwin, N. J. Halas, and P. Nordlander, Phys. Rev. B 76, 165410 (2007).
[CrossRef]

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, Phys. Rev. B 79, 8 (2009).

Phys. Rev. E (1)

M. Paulus and O. J. F. Martin, Phys. Rev. E 63, 066615 (2001).
[CrossRef]

Other (2)

B. E. A. Saleh and M. C. Teich, “Guided-wave optics,” in Fundamentals of Photonics (Wiley, 2001), pp. 238–271.

D. Pozar, Microwave Engineering (Wiley, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Silver nanoparticle of length L spaced 100 nm above a continuous silver film on glass. The system is excited by a horizontally oriented electric dipole (blue arrow). Eigenmode calculated Ex field components for the three modes I, II, and III in the limit where L are depicted along the structure. These are plotted for a frequency of 7×1014 and kx values I=1.6×107m1, II=1.972×107m1, and III=2.7×107m1. (b) SPP dispersion for the three propagating modes I, II, and III in the limit of a bilayer metal film system. (c) Dispersion diagram for the Ag particle plus film system with L=15μm, showing emergence of the three propagating modes (normalized).

Fig. 2.
Fig. 2.

Absorption plots obtained via analytical transfer matrix method calculations, showing the coupling interactions between a 50 nm Ag film on glass and an overlaying 100 nm absorbing layer with six nondispersive resonances. The x-axis indicates the ratio between the parallel kx component and the incident k-vector magnitude kinc. (a, b) Effects with strong absorption over a large range of k-vectors and (c, d) over a smaller range of k-vectors with smaller absorption.

Fig. 3.
Fig. 3.

Dispersions (normalized) for a Ag particle (left panels) and for the Ag particle+film system (right panels) in Fig. 1, obtained via a Fourier analysis of the near field. Results for particle lengths of (a) L=1μm, (b) L=2.5μm, and (c) L=5μm are shown. As can be seen, the minima in the dispersion curve of the total system correspond with the maxima in the dispersion of the lone particle, indicating the presence of LSP–SPP coupling interactions between the particle resonances and the SPP continuum of the film.

Metrics