Abstract

Unusually large phase modulation in a commercial liquid crystal spatial light modulator (LCSLM) is reported. Such a situation is obtained by illuminating with visible light a device designed to operate in the infrared range. The phase modulation range reaches 6π radians in the red region of the visible spectrum and 10π radians in the blue region. Excellent diffraction efficiency in high harmonic orders is demonstrated despite a concomitant and non-negligible Fabry–Perot interference effect. This type of SLM opens the possibility to implement diffractive elements with reduced chromatic dispersion or chromatic control.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2004).
  2. P. Yeh and C. Gu, Optics of Liquid Crystals Displays, 2nd ed. (Wiley, 2010).
  3. U. Efron, S.-T. Wu, and T. D. Bates, J. Opt. Soc. Am. B 3, 247 (1986).
    [CrossRef]
  4. N. Konforti, E. Marom, and S.-T. Wu, Opt. Lett. 13, 251 (1988).
    [CrossRef]
  5. S.-T. Wu, Appl. Opt. 28, 48 (1989).
    [CrossRef]
  6. I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J. Yzuel, Appl. Opt. 43, 6278 (2004).
    [CrossRef]
  7. J. A. Davis, J. Nicolas, and A. Marquez, Appl. Opt. 41, 4579 (2002).
    [CrossRef]
  8. J. L. Martínez, I. Moreno, J. A. Davis, T. J. Hernández, and K. P. McAuley, Appl. Opt. 49, 5929 (2010).
    [CrossRef]
  9. J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, Opt. Lasers Eng. 51, 111 (2013).
    [CrossRef]
  10. K.-H. Fan-Chiang, S.-T. Wu, and S.-H. Chen, J. Disp. Technol. 1, 304 (2005).
    [CrossRef]
  11. H. Dammann, Appl. Opt. 17, 2273 (1978).
    [CrossRef]
  12. D. Faklis and G. M. Morris, Appl. Opt. 34, 2462 (1995).
    [CrossRef]
  13. D. W. Sweeney and G. E. Sommargren, Appl. Opt. 34, 2469 (1995).
    [CrossRef]
  14. J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, Opt. Eng. 38, 1051 (1999).
    [CrossRef]
  15. S.-T. Wu, Phys. Rev. A 33, 1270 (1986).
    [CrossRef]

2013

J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, Opt. Lasers Eng. 51, 111 (2013).
[CrossRef]

2010

2005

K.-H. Fan-Chiang, S.-T. Wu, and S.-H. Chen, J. Disp. Technol. 1, 304 (2005).
[CrossRef]

2004

2002

1999

J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, Opt. Eng. 38, 1051 (1999).
[CrossRef]

1995

1989

1988

1986

1978

Albero, J.

J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, Opt. Lasers Eng. 51, 111 (2013).
[CrossRef]

Amako, J.

J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, Opt. Eng. 38, 1051 (1999).
[CrossRef]

Bates, T. D.

Campos, J.

Chen, S.-H.

K.-H. Fan-Chiang, S.-T. Wu, and S.-H. Chen, J. Disp. Technol. 1, 304 (2005).
[CrossRef]

Cottrell, D. M.

J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, Opt. Eng. 38, 1051 (1999).
[CrossRef]

Dammann, H.

Davis, J. A.

Efron, U.

Faklis, D.

Fan-Chiang, K.-H.

K.-H. Fan-Chiang, S.-T. Wu, and S.-H. Chen, J. Disp. Technol. 1, 304 (2005).
[CrossRef]

García-Martínez, P.

J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, Opt. Lasers Eng. 51, 111 (2013).
[CrossRef]

Goodman, J.

J. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2004).

Gu, C.

P. Yeh and C. Gu, Optics of Liquid Crystals Displays, 2nd ed. (Wiley, 2010).

Hernández, T. J.

Iemmi, C.

Konforti, N.

Marom, E.

Marquez, A.

Márquez, A.

Martínez, J. L.

J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, Opt. Lasers Eng. 51, 111 (2013).
[CrossRef]

J. L. Martínez, I. Moreno, J. A. Davis, T. J. Hernández, and K. P. McAuley, Appl. Opt. 49, 5929 (2010).
[CrossRef]

McAuley, K. P.

Moreno, I.

Morris, G. M.

Nicolas, J.

Sommargren, G. E.

Sonehara, T.

J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, Opt. Eng. 38, 1051 (1999).
[CrossRef]

Sweeney, D. W.

Tsai, P.

J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, Opt. Eng. 38, 1051 (1999).
[CrossRef]

Wu, S.-T.

Yeh, P.

P. Yeh and C. Gu, Optics of Liquid Crystals Displays, 2nd ed. (Wiley, 2010).

Yzuel, M. J.

Appl. Opt.

J. Disp. Technol.

K.-H. Fan-Chiang, S.-T. Wu, and S.-H. Chen, J. Disp. Technol. 1, 304 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Eng.

J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, and J. Amako, Opt. Eng. 38, 1051 (1999).
[CrossRef]

Opt. Lasers Eng.

J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, Opt. Lasers Eng. 51, 111 (2013).
[CrossRef]

Opt. Lett.

Phys. Rev. A

S.-T. Wu, Phys. Rev. A 33, 1270 (1986).
[CrossRef]

Other

J. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2004).

P. Yeh and C. Gu, Optics of Liquid Crystals Displays, 2nd ed. (Wiley, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Normalized reflectance as a function of the addressed gray level for wavelengths of (a) 633 nm, (b) 514 nm, and (c) 454 nm. Input polarization is selected parallel to the LC director.

Fig. 2.
Fig. 2.

Diffraction pattern as a function of the maximum phase shift Φmax of a blazed grating when it is growing from zero to 8π radians. Light intensity is progressively transferred from zero to fourth diffraction order.

Fig. 3.
Fig. 3.

Superposition of the diffraction patterns for wavelengths of 633, 514, and 454 nm for (a) blazed grating operating in the first diffraction order and (b) blazed grating operating in higher diffraction orders. For the sake of comparison, the grating in (a) has a period four times shorter compared to (b) in order to achieve the same diffraction angle for 514 nm.

Tables (1)

Tables Icon

Table 1. Relative Ratio s/s514, Being s=sinθ and θ the Diffraction Angle, for the Two Gratings in Fig. 3 and for the Wavelengths of 633, 514, and 454 nm, Respectively

Metrics