Abstract

A novel measurement technique for the relative propagation delay of two signals based on a caliper ruler is proposed. The technique is applied to the chromatic dispersion measurements of single-mode fiber (SMF), dispersion-compensation fiber, and dispersion-shifted fiber. Compared to the conventional time-of-flight method, dispersion can be measured even when the delay difference is smaller than the measurement pulse’s width. The sign of dispersion is preserved during measurement. The scheme also supports the usage of multiple wavelengths simultaneously for fast measurement. Measurement error of less than 0.2ps/(km*nm) in SMF is experimentally demonstrated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. G. Cohen, J. Lightwave Technol. 3, 958 (1985).
    [CrossRef]
  2. C. Lin, A. R. Tynes, A. Tomita, P. L. Liu, and D. L. Philen, Bell Syst. Tech. J. 62, 457 (1983).
    [CrossRef]
  3. B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, IEEE Trans. Microwave Theor. Tech. MTT-30, 1509 (1982).
  4. C. Yu, G. J. Pendock, X. Yi, and W. Shieh, in Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2008), paper JWA29.
  5. P. Merritt, R. P. Tatam, and D. A. Jackson, J. Lightwave Technol. 7, 703 (1989).
    [CrossRef]
  6. G.-W. Lu, K. T. Tsai, W. I. Way, and L.-K. Chen, in Proceedings of the European Conference and Exhibition on Optical Communication (2006), paper We3.P.67.
  7. J. Fatome, S. Pitois, and G. Millot, Opt. Fiber Technol. 12, 243 (2006).
    [CrossRef]
  8. H. Chen, Opt. Commun. 220, 331 (2003).
    [CrossRef]
  9. http://en.wikipedia.org/wiki/Vernier_scale .
  10. D. Chen, C. Shu, and S. He, Opt. Lett., 33, 1395 (2008).
    [CrossRef]
  11. X. Li, J. Yu, Z. Dong, J. Zhang, Y. Shao, and N. Chi, Opt. Express 20, 21833 (2012).
    [CrossRef]
  12. Corning Incorporated, Single-Mode Dispersion Measurement Method, MM26 (2001).

2012 (1)

2008 (1)

2006 (1)

J. Fatome, S. Pitois, and G. Millot, Opt. Fiber Technol. 12, 243 (2006).
[CrossRef]

2003 (1)

H. Chen, Opt. Commun. 220, 331 (2003).
[CrossRef]

1989 (1)

P. Merritt, R. P. Tatam, and D. A. Jackson, J. Lightwave Technol. 7, 703 (1989).
[CrossRef]

1985 (1)

L. G. Cohen, J. Lightwave Technol. 3, 958 (1985).
[CrossRef]

1983 (1)

C. Lin, A. R. Tynes, A. Tomita, P. L. Liu, and D. L. Philen, Bell Syst. Tech. J. 62, 457 (1983).
[CrossRef]

1982 (1)

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, IEEE Trans. Microwave Theor. Tech. MTT-30, 1509 (1982).

Chen, D.

Chen, H.

H. Chen, Opt. Commun. 220, 331 (2003).
[CrossRef]

Chen, L.-K.

G.-W. Lu, K. T. Tsai, W. I. Way, and L.-K. Chen, in Proceedings of the European Conference and Exhibition on Optical Communication (2006), paper We3.P.67.

Chi, N.

Cohen, L. G.

L. G. Cohen, J. Lightwave Technol. 3, 958 (1985).
[CrossRef]

Costa, B.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, IEEE Trans. Microwave Theor. Tech. MTT-30, 1509 (1982).

Dong, Z.

Fatome, J.

J. Fatome, S. Pitois, and G. Millot, Opt. Fiber Technol. 12, 243 (2006).
[CrossRef]

He, S.

Jackson, D. A.

P. Merritt, R. P. Tatam, and D. A. Jackson, J. Lightwave Technol. 7, 703 (1989).
[CrossRef]

Li, X.

Lin, C.

C. Lin, A. R. Tynes, A. Tomita, P. L. Liu, and D. L. Philen, Bell Syst. Tech. J. 62, 457 (1983).
[CrossRef]

Liu, P. L.

C. Lin, A. R. Tynes, A. Tomita, P. L. Liu, and D. L. Philen, Bell Syst. Tech. J. 62, 457 (1983).
[CrossRef]

Lu, G.-W.

G.-W. Lu, K. T. Tsai, W. I. Way, and L.-K. Chen, in Proceedings of the European Conference and Exhibition on Optical Communication (2006), paper We3.P.67.

Mazzoni, D.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, IEEE Trans. Microwave Theor. Tech. MTT-30, 1509 (1982).

Merritt, P.

P. Merritt, R. P. Tatam, and D. A. Jackson, J. Lightwave Technol. 7, 703 (1989).
[CrossRef]

Millot, G.

J. Fatome, S. Pitois, and G. Millot, Opt. Fiber Technol. 12, 243 (2006).
[CrossRef]

Pendock, G. J.

C. Yu, G. J. Pendock, X. Yi, and W. Shieh, in Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2008), paper JWA29.

Philen, D. L.

C. Lin, A. R. Tynes, A. Tomita, P. L. Liu, and D. L. Philen, Bell Syst. Tech. J. 62, 457 (1983).
[CrossRef]

Pitois, S.

J. Fatome, S. Pitois, and G. Millot, Opt. Fiber Technol. 12, 243 (2006).
[CrossRef]

Puleo, M.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, IEEE Trans. Microwave Theor. Tech. MTT-30, 1509 (1982).

Shao, Y.

Shieh, W.

C. Yu, G. J. Pendock, X. Yi, and W. Shieh, in Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2008), paper JWA29.

Shu, C.

Tatam, R. P.

P. Merritt, R. P. Tatam, and D. A. Jackson, J. Lightwave Technol. 7, 703 (1989).
[CrossRef]

Tomita, A.

C. Lin, A. R. Tynes, A. Tomita, P. L. Liu, and D. L. Philen, Bell Syst. Tech. J. 62, 457 (1983).
[CrossRef]

Tsai, K. T.

G.-W. Lu, K. T. Tsai, W. I. Way, and L.-K. Chen, in Proceedings of the European Conference and Exhibition on Optical Communication (2006), paper We3.P.67.

Tynes, A. R.

C. Lin, A. R. Tynes, A. Tomita, P. L. Liu, and D. L. Philen, Bell Syst. Tech. J. 62, 457 (1983).
[CrossRef]

Vezzoni, E.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, IEEE Trans. Microwave Theor. Tech. MTT-30, 1509 (1982).

Way, W. I.

G.-W. Lu, K. T. Tsai, W. I. Way, and L.-K. Chen, in Proceedings of the European Conference and Exhibition on Optical Communication (2006), paper We3.P.67.

Yi, X.

C. Yu, G. J. Pendock, X. Yi, and W. Shieh, in Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2008), paper JWA29.

Yu, C.

C. Yu, G. J. Pendock, X. Yi, and W. Shieh, in Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2008), paper JWA29.

Yu, J.

Zhang, J.

Bell Syst. Tech. J. (1)

C. Lin, A. R. Tynes, A. Tomita, P. L. Liu, and D. L. Philen, Bell Syst. Tech. J. 62, 457 (1983).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, IEEE Trans. Microwave Theor. Tech. MTT-30, 1509 (1982).

J. Lightwave Technol. (2)

P. Merritt, R. P. Tatam, and D. A. Jackson, J. Lightwave Technol. 7, 703 (1989).
[CrossRef]

L. G. Cohen, J. Lightwave Technol. 3, 958 (1985).
[CrossRef]

Opt. Commun. (1)

H. Chen, Opt. Commun. 220, 331 (2003).
[CrossRef]

Opt. Express (1)

Opt. Fiber Technol. (1)

J. Fatome, S. Pitois, and G. Millot, Opt. Fiber Technol. 12, 243 (2006).
[CrossRef]

Opt. Lett. (1)

Other (4)

http://en.wikipedia.org/wiki/Vernier_scale .

Corning Incorporated, Single-Mode Dispersion Measurement Method, MM26 (2001).

G.-W. Lu, K. T. Tsai, W. I. Way, and L.-K. Chen, in Proceedings of the European Conference and Exhibition on Optical Communication (2006), paper We3.P.67.

C. Yu, G. J. Pendock, X. Yi, and W. Shieh, in Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (2008), paper JWA29.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic diagram of the proposed measurement system.

Fig. 2.
Fig. 2.

(a) Time domain traces of the pulse trains of two wavelengths. (b) Combined trace in back-to-back transmission. The green dashed line is the envelope of the peak intensity in the hump zone. The grid is aligned with the midpoint between two overlapped pulses.

Fig. 3.
Fig. 3.

(a) Pulses from the two pulse trains are overlapped with separation x0. (b) Added intensity at the midpoint M between two pulses versus separation x.

Fig. 4.
Fig. 4.

(a) Reference trace. (b) After transmission, the maximum intensity pulse locates at the middle of the envelope. (c) After transmission, the maximum intensity pulse is not at the middle of the envelope.

Fig. 5.
Fig. 5.

Humps occur at different times due to the periods of humps being different. The time delays of the 20th hump counted from the aligned pulse are (a) 73200δ for λ1 and λ2, (b) 71980δ for λ1 and λ3, and (c) 70800δ for λ2 and λ3.

Fig. 6.
Fig. 6.

Reference trace with zero dispersion (blue) and the measured trace after 50 km SMF transmission (red) with wavelengths of 1540 and 1550 nm.

Fig. 7.
Fig. 7.

Measured dispersion plot versus wavelength.

Fig. 8.
Fig. 8.

Measurement error versus wavelength.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D(λ)=τL(λ2λ1),

Metrics