Abstract

We demonstrate spectral shaping of entangled photons in the telecom band with a programmable, fiber-based optical filter. The fine-resolution spectral control permits implementation of length-40 Hadamard codes, through which we are able to verify frequency anticorrelation with a 20-fold increase in total counts over that permitted by the equivalent pair of monochromators at the same input flux. By programming the complex spectral transmission function corresponding to a Mach–Zehnder interferometer, we also construct variations on Franson interferometers that are free from mechanical instabilities, demonstrating spectral phase independence in the slow-detector limit, in which all temporal features are unobservable. Our configuration furnishes a single, compact arrangement for manipulating telecom biphotons and characterizing their quality.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Aspect, Nature 398, 189 (1999).
    [CrossRef]
  2. N. Gisin and R. Thew, Nat. Photonics 1, 165 (2007).
    [CrossRef]
  3. A. M. Weiner, Opt. Commun. 284, 3669 (2011).
    [CrossRef]
  4. V. Binjrajka, C.-C. Chang, A. W. R. Emanuel, D. E. Leaird, and A. M. Weiner, Opt. Lett. 21, 1756 (1996).
    [CrossRef]
  5. A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94, 073601 (2005).
    [CrossRef]
  6. B. Dayan, Y. Bromberg, I. Afek, and Y. Silberberg, Phys. Rev. A 75, 043804 (2007).
    [CrossRef]
  7. F. Zäh, M. Halder, and T. Feurer, Opt. Express 16, 16452 (2008).
    [CrossRef]
  8. E. Poem, Y. Gilead, Y. Lahini, and Y. Silberberg, Phys. Rev. A 86, 023836 (2012).
    [CrossRef]
  9. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  10. Y. Shih, Rep. Prog. Phys. 66, 1009 (2003).
    [CrossRef]
  11. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, Opt. Lett. 27, 179 (2002).
    [CrossRef]
  12. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, J. Lightwave Technol. 24, 2579 (2006).
    [CrossRef]
  13. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, Electron. Lett. 37, 26 (2001).
    [CrossRef]
  14. J. Oh, C. Antonelli, and M. Brodsky, J. Lightwave Technol. 29, 324 (2011).
    [CrossRef]
  15. E. D. Nelson and M. L. Fredman, J. Opt. Soc. Am. 60, 1664 (1970).
    [CrossRef]
  16. K. G. Beauchamp, Applications of Walsh and Related Functions (Academic, 1984).
  17. C. Liang, K. F. Lee, M. Medic, P. Kumar, R. H. Hadfield, and S. W. Nam, Opt. Express 15, 1322 (2007).
    [CrossRef]
  18. J. D. Franson, Phys. Rev. Lett. 62, 2205 (1989).
    [CrossRef]
  19. Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, Phys. Rev. Lett. 65, 321 (1990).
    [CrossRef]

2012 (1)

E. Poem, Y. Gilead, Y. Lahini, and Y. Silberberg, Phys. Rev. A 86, 023836 (2012).
[CrossRef]

2011 (2)

2008 (1)

2007 (3)

C. Liang, K. F. Lee, M. Medic, P. Kumar, R. H. Hadfield, and S. W. Nam, Opt. Express 15, 1322 (2007).
[CrossRef]

N. Gisin and R. Thew, Nat. Photonics 1, 165 (2007).
[CrossRef]

B. Dayan, Y. Bromberg, I. Afek, and Y. Silberberg, Phys. Rev. A 75, 043804 (2007).
[CrossRef]

2006 (1)

2005 (1)

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94, 073601 (2005).
[CrossRef]

2003 (1)

Y. Shih, Rep. Prog. Phys. 66, 1009 (2003).
[CrossRef]

2002 (1)

2001 (1)

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, Electron. Lett. 37, 26 (2001).
[CrossRef]

1999 (1)

A. Aspect, Nature 398, 189 (1999).
[CrossRef]

1996 (1)

1990 (1)

Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, Phys. Rev. Lett. 65, 321 (1990).
[CrossRef]

1989 (1)

J. D. Franson, Phys. Rev. Lett. 62, 2205 (1989).
[CrossRef]

1970 (1)

Afek, I.

B. Dayan, Y. Bromberg, I. Afek, and Y. Silberberg, Phys. Rev. A 75, 043804 (2007).
[CrossRef]

Antonelli, C.

Aspect, A.

A. Aspect, Nature 398, 189 (1999).
[CrossRef]

Baldi, P.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, Electron. Lett. 37, 26 (2001).
[CrossRef]

Beauchamp, K. G.

K. G. Beauchamp, Applications of Walsh and Related Functions (Academic, 1984).

Binjrajka, V.

Brodsky, M.

Bromberg, Y.

B. Dayan, Y. Bromberg, I. Afek, and Y. Silberberg, Phys. Rev. A 75, 043804 (2007).
[CrossRef]

Chang, C.-C.

Dayan, B.

B. Dayan, Y. Bromberg, I. Afek, and Y. Silberberg, Phys. Rev. A 75, 043804 (2007).
[CrossRef]

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94, 073601 (2005).
[CrossRef]

De Micheli, M.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, Electron. Lett. 37, 26 (2001).
[CrossRef]

De Riedmatten, H.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, Electron. Lett. 37, 26 (2001).
[CrossRef]

Emanuel, A. W. R.

Fejer, M. M.

Feurer, T.

Franson, J. D.

J. D. Franson, Phys. Rev. Lett. 62, 2205 (1989).
[CrossRef]

Fredman, M. L.

Friesem, A. A.

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94, 073601 (2005).
[CrossRef]

Fujimura, M.

Gilead, Y.

E. Poem, Y. Gilead, Y. Lahini, and Y. Silberberg, Phys. Rev. A 86, 023836 (2012).
[CrossRef]

Gisin, N.

N. Gisin and R. Thew, Nat. Photonics 1, 165 (2007).
[CrossRef]

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, Electron. Lett. 37, 26 (2001).
[CrossRef]

Hadfield, R. H.

Halder, M.

Kumar, P.

Kumar, S.

Kurz, J. R.

Lahini, Y.

E. Poem, Y. Gilead, Y. Lahini, and Y. Silberberg, Phys. Rev. A 86, 023836 (2012).
[CrossRef]

Langrock, C.

Leaird, D. E.

Lee, K. F.

Liang, C.

Mandel, L.

Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, Phys. Rev. Lett. 65, 321 (1990).
[CrossRef]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

McGeehan, J. E.

Medic, M.

Nam, S. W.

Nelson, E. D.

Oh, J.

Ostrowsky, D. B.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, Electron. Lett. 37, 26 (2001).
[CrossRef]

Ou, Z. Y.

Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, Phys. Rev. Lett. 65, 321 (1990).
[CrossRef]

Parameswaran, K. R.

Pe’er, A.

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94, 073601 (2005).
[CrossRef]

Poem, E.

E. Poem, Y. Gilead, Y. Lahini, and Y. Silberberg, Phys. Rev. A 86, 023836 (2012).
[CrossRef]

Roussev, R. V.

Route, R. K.

Shih, Y.

Y. Shih, Rep. Prog. Phys. 66, 1009 (2003).
[CrossRef]

Silberberg, Y.

E. Poem, Y. Gilead, Y. Lahini, and Y. Silberberg, Phys. Rev. A 86, 023836 (2012).
[CrossRef]

B. Dayan, Y. Bromberg, I. Afek, and Y. Silberberg, Phys. Rev. A 75, 043804 (2007).
[CrossRef]

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94, 073601 (2005).
[CrossRef]

Tanzilli, S.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, Electron. Lett. 37, 26 (2001).
[CrossRef]

Thew, R.

N. Gisin and R. Thew, Nat. Photonics 1, 165 (2007).
[CrossRef]

Tittel, W.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, Electron. Lett. 37, 26 (2001).
[CrossRef]

Wang, L. J.

Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, Phys. Rev. Lett. 65, 321 (1990).
[CrossRef]

Weiner, A. M.

Willner, A. E.

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Zäh, F.

Zbinden, H.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, Electron. Lett. 37, 26 (2001).
[CrossRef]

Zou, X. Y.

Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, Phys. Rev. Lett. 65, 321 (1990).
[CrossRef]

Electron. Lett. (1)

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, Electron. Lett. 37, 26 (2001).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. (1)

Nat. Photonics (1)

N. Gisin and R. Thew, Nat. Photonics 1, 165 (2007).
[CrossRef]

Nature (1)

A. Aspect, Nature 398, 189 (1999).
[CrossRef]

Opt. Commun. (1)

A. M. Weiner, Opt. Commun. 284, 3669 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (2)

E. Poem, Y. Gilead, Y. Lahini, and Y. Silberberg, Phys. Rev. A 86, 023836 (2012).
[CrossRef]

B. Dayan, Y. Bromberg, I. Afek, and Y. Silberberg, Phys. Rev. A 75, 043804 (2007).
[CrossRef]

Phys. Rev. Lett. (3)

A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, Phys. Rev. Lett. 94, 073601 (2005).
[CrossRef]

J. D. Franson, Phys. Rev. Lett. 62, 2205 (1989).
[CrossRef]

Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, Phys. Rev. Lett. 65, 321 (1990).
[CrossRef]

Rep. Prog. Phys. (1)

Y. Shih, Rep. Prog. Phys. 66, 1009 (2003).
[CrossRef]

Other (2)

K. G. Beauchamp, Applications of Walsh and Related Functions (Academic, 1984).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Experimental setup. (b) SPDC spectrum after collimator, showing signal and idler passbands. The total FWHM is 7.5 THz. (c) Pulse-shaper transmittance for Hadamard codes. Here code 8 is applied to the idler spectrum and code 30 to the signal.

Fig. 2.
Fig. 2.

Coincidence rate as a function of signal-idler Hadamard codes, normalized to idler detections. Only codes 2 through 40 are shown, as code 1 corresponds to full transmission. When the codes are matched, approximately twice as many coincidences are registered as when the codes differ, confirming spectral entanglement.

Fig. 3.
Fig. 3.

(a) Typical Franson interferometer. The signal and idler photons are sent through MZIs with different phase shifts in the long arms: Φ s for the signal and Φ i for idler. (b) Spectral transmittance and phase applied by pulse shaper to emulate a Franson interferometer. Signal and idler photons are distinguished by frequency and sent through spectral filters that are equivalent to traversing MZIs. In addition to 2 π jumps from wrapping the spectral phase, π discontinuities also occur as the sinusoidal field transmission function—the square of which gives the power transmittance—changes sign.

Fig. 4.
Fig. 4.

(a) Experimental coincidence rate for pulse-shaper Franson interferometer, at matched MZI delays and with a 30 s integration time per point. The detected coincidences show interference with the applied phase Φ s + Φ i , possessing a visibility of 0.43. (b) Reduction in visibility as the MZI delays are shifted from each other. The theoretical curve is scaled to match the experimental visibility at zero mismatch, and error bars represent 95% confidence intervals for the fit parameters. (c) Coincidence rate for pulse-shaper interferometer with flat spectral phase, again at a measurement time of 30 s per data point. The visibility is 0.45.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R c 1 + V cos ( Φ s + Φ i + 2 ω 0 T ) ,
T ( ω ) = cos 2 ( Φ s + ω T 2 ) ,
ϕ ( ω ) = { ( Φ s + ω T ) / 2 if cos ( Φ s + ω T 2 ) > 0 ( Φ s + ω T ) / 2 + π if cos ( Φ s + ω T 2 ) < 0 .
R c 1 + V sinc ( Δ ω Δ T 2 ) cos ( Φ s + Φ i + φ ) ,
R c d Ω | F ( Ω ) H s ( ω 0 + Ω ) H i ( ω 0 Ω ) | 2 .

Metrics