Abstract

With respect to experimental condition, we have investigated the point spread function of a high numerical aperture objective lens, taking into account the absorption effect of the studied material. By using a material possessing an ultralow one-photon absorption (LOPA) coefficient at the excitation wavelength, the light beam can penetrate deeply inside the material and be tightly focused into a subwavelength spot, almost the same as in the absence of material. Combining tight focusing and ultralow absorption conditions, we show that LOPA-based microscopy is thus capable of three-dimensional imaging and fabrication with long penetration depth up to 300 μm. As compared to the commonly used two-photon absorption microscope, the LOPA method allows simplification of the experimental setup and also minimization of the photodamaging or bleaching effect of materials.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).
  2. M. Farsari and B. N. Chichkov, Nat. Photonics 3, 450 (2009).
    [CrossRef]
  3. D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
    [CrossRef]
  4. P. Török and F. J. Kao, Optical Imaging and Microscopy, 2nd ed. (Springer, 2007).
  5. M. Kempe, W. Rudolph, and E. Welsch, J. Opt. Soc. Am. A 13, 46 (1996).
    [CrossRef]
  6. S. Hell and J. Wichmann, Opt. Lett. 19, 780 (1994).
    [CrossRef]
  7. R. Menon and H. I. Smith, J. Opt. Soc. Am. A 23, 2290 (2006).
    [CrossRef]
  8. T. Wilson, Confocal Microscopy (Academic, 1990).
  9. W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
    [CrossRef]
  10. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, Nat. Photonics 7, 205 (2013).
    [CrossRef]
  11. Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, Nano Today 5(5), 435 (2010).
    [CrossRef]
  12. E. Wolf, Proc. Roy. Soc. A 253, 349 (1959).
    [CrossRef]
  13. P. P. Török, P. Varga, Z. Laczik, and G. Booker, Opt. Soc. Am. A 12, 2136 (1995).
  14. X. A. Hao, C. F. Kuang, T. T. Wang, and X. Liu, J. Opt. 12, 115707 (2010).
    [CrossRef]
  15. H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photonics 2, 501 (2008).
    [CrossRef]
  16. N. D. Lai, J. H. Lin, P. W. Chen, J. L. Tang, and C. C. Hsu, Opt. Commun. 258, 97 (2006).
    [CrossRef]
  17. L. E. Helseth, Opt. Commun. 212, 343 (2002).
    [CrossRef]
  18. M. T. Do, T. T. N. Nguyen, Q. Li, H. Benisty, I. Ledoux-Rak, and N. D. Lai, Opt. Express 21, 20964 (2013).
    [CrossRef]
  19. S. A. Prahl, M. Keijzer, S. Jacques, and A. J. Welch, Proc. SPIE 5, 102 (1989).

2013 (2)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, Nat. Photonics 7, 205 (2013).
[CrossRef]

M. T. Do, T. T. N. Nguyen, Q. Li, H. Benisty, I. Ledoux-Rak, and N. D. Lai, Opt. Express 21, 20964 (2013).
[CrossRef]

2010 (2)

X. A. Hao, C. F. Kuang, T. T. Wang, and X. Liu, J. Opt. 12, 115707 (2010).
[CrossRef]

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, Nano Today 5(5), 435 (2010).
[CrossRef]

2009 (1)

M. Farsari and B. N. Chichkov, Nat. Photonics 3, 450 (2009).
[CrossRef]

2008 (1)

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photonics 2, 501 (2008).
[CrossRef]

2006 (2)

N. D. Lai, J. H. Lin, P. W. Chen, J. L. Tang, and C. C. Hsu, Opt. Commun. 258, 97 (2006).
[CrossRef]

R. Menon and H. I. Smith, J. Opt. Soc. Am. A 23, 2290 (2006).
[CrossRef]

2002 (1)

L. E. Helseth, Opt. Commun. 212, 343 (2002).
[CrossRef]

1996 (1)

1995 (1)

P. P. Török, P. Varga, Z. Laczik, and G. Booker, Opt. Soc. Am. A 12, 2136 (1995).

1994 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef]

1989 (2)

D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
[CrossRef]

S. A. Prahl, M. Keijzer, S. Jacques, and A. J. Welch, Proc. SPIE 5, 102 (1989).

1959 (1)

E. Wolf, Proc. Roy. Soc. A 253, 349 (1959).
[CrossRef]

Benisty, H.

Booker, G.

P. P. Török, P. Varga, Z. Laczik, and G. Booker, Opt. Soc. Am. A 12, 2136 (1995).

Chen, P. W.

N. D. Lai, J. H. Lin, P. W. Chen, J. L. Tang, and C. C. Hsu, Opt. Commun. 258, 97 (2006).
[CrossRef]

Chen, Q. D.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, Nano Today 5(5), 435 (2010).
[CrossRef]

Chichkov, B. N.

M. Farsari and B. N. Chichkov, Nat. Photonics 3, 450 (2009).
[CrossRef]

Chong, C. T.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photonics 2, 501 (2008).
[CrossRef]

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, Nat. Photonics 7, 205 (2013).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef]

Do, M. T.

Farsari, M.

M. Farsari and B. N. Chichkov, Nat. Photonics 3, 450 (2009).
[CrossRef]

Hao, X. A.

X. A. Hao, C. F. Kuang, T. T. Wang, and X. Liu, J. Opt. 12, 115707 (2010).
[CrossRef]

Hell, S.

Helseth, L. E.

L. E. Helseth, Opt. Commun. 212, 343 (2002).
[CrossRef]

Horton, N. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, Nat. Photonics 7, 205 (2013).
[CrossRef]

Hsu, C. C.

N. D. Lai, J. H. Lin, P. W. Chen, J. L. Tang, and C. C. Hsu, Opt. Commun. 258, 97 (2006).
[CrossRef]

Jacques, S.

S. A. Prahl, M. Keijzer, S. Jacques, and A. J. Welch, Proc. SPIE 5, 102 (1989).

Kao, F. J.

P. Török and F. J. Kao, Optical Imaging and Microscopy, 2nd ed. (Springer, 2007).

Keijzer, M.

S. A. Prahl, M. Keijzer, S. Jacques, and A. J. Welch, Proc. SPIE 5, 102 (1989).

Kempe, M.

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, Nat. Photonics 7, 205 (2013).
[CrossRef]

Kuang, C. F.

X. A. Hao, C. F. Kuang, T. T. Wang, and X. Liu, J. Opt. 12, 115707 (2010).
[CrossRef]

Laczik, Z.

P. P. Török, P. Varga, Z. Laczik, and G. Booker, Opt. Soc. Am. A 12, 2136 (1995).

Lai, N. D.

M. T. Do, T. T. N. Nguyen, Q. Li, H. Benisty, I. Ledoux-Rak, and N. D. Lai, Opt. Express 21, 20964 (2013).
[CrossRef]

N. D. Lai, J. H. Lin, P. W. Chen, J. L. Tang, and C. C. Hsu, Opt. Commun. 258, 97 (2006).
[CrossRef]

Ledoux-Rak, I.

Li, Q.

Lin, J. H.

N. D. Lai, J. H. Lin, P. W. Chen, J. L. Tang, and C. C. Hsu, Opt. Commun. 258, 97 (2006).
[CrossRef]

Liu, X.

X. A. Hao, C. F. Kuang, T. T. Wang, and X. Liu, J. Opt. 12, 115707 (2010).
[CrossRef]

Lukyanchuk, B.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photonics 2, 501 (2008).
[CrossRef]

Menon, R.

Nguyen, T. T. N.

Parthenopoulos, D. A.

D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
[CrossRef]

Pawley, J. B.

J. B. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).

Prahl, S. A.

S. A. Prahl, M. Keijzer, S. Jacques, and A. J. Welch, Proc. SPIE 5, 102 (1989).

Rentzepis, P. M.

D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
[CrossRef]

Rudolph, W.

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, Nat. Photonics 7, 205 (2013).
[CrossRef]

Sheppard, C.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photonics 2, 501 (2008).
[CrossRef]

Shi, L. P.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photonics 2, 501 (2008).
[CrossRef]

Smith, H. I.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef]

Sun, H. B.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, Nano Today 5(5), 435 (2010).
[CrossRef]

Tang, J. L.

N. D. Lai, J. H. Lin, P. W. Chen, J. L. Tang, and C. C. Hsu, Opt. Commun. 258, 97 (2006).
[CrossRef]

Török, P.

P. Török and F. J. Kao, Optical Imaging and Microscopy, 2nd ed. (Springer, 2007).

Török, P. P.

P. P. Török, P. Varga, Z. Laczik, and G. Booker, Opt. Soc. Am. A 12, 2136 (1995).

Varga, P.

P. P. Török, P. Varga, Z. Laczik, and G. Booker, Opt. Soc. Am. A 12, 2136 (1995).

Wang, H. F.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photonics 2, 501 (2008).
[CrossRef]

Wang, K.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, Nat. Photonics 7, 205 (2013).
[CrossRef]

Wang, T. T.

X. A. Hao, C. F. Kuang, T. T. Wang, and X. Liu, J. Opt. 12, 115707 (2010).
[CrossRef]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef]

Welch, A. J.

S. A. Prahl, M. Keijzer, S. Jacques, and A. J. Welch, Proc. SPIE 5, 102 (1989).

Welsch, E.

Wichmann, J.

Wilson, T.

T. Wilson, Confocal Microscopy (Academic, 1990).

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, Nat. Photonics 7, 205 (2013).
[CrossRef]

Wolf, E.

E. Wolf, Proc. Roy. Soc. A 253, 349 (1959).
[CrossRef]

Xia, H.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, Nano Today 5(5), 435 (2010).
[CrossRef]

Xu, C.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, Nat. Photonics 7, 205 (2013).
[CrossRef]

Zhang, Y. L.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, Nano Today 5(5), 435 (2010).
[CrossRef]

J. Opt. (1)

X. A. Hao, C. F. Kuang, T. T. Wang, and X. Liu, J. Opt. 12, 115707 (2010).
[CrossRef]

J. Opt. Soc. Am. A (2)

Nano Today (1)

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, Nano Today 5(5), 435 (2010).
[CrossRef]

Nat. Photonics (3)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, Nat. Photonics 7, 205 (2013).
[CrossRef]

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photonics 2, 501 (2008).
[CrossRef]

M. Farsari and B. N. Chichkov, Nat. Photonics 3, 450 (2009).
[CrossRef]

Opt. Commun. (2)

N. D. Lai, J. H. Lin, P. W. Chen, J. L. Tang, and C. C. Hsu, Opt. Commun. 258, 97 (2006).
[CrossRef]

L. E. Helseth, Opt. Commun. 212, 343 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Soc. Am. A (1)

P. P. Török, P. Varga, Z. Laczik, and G. Booker, Opt. Soc. Am. A 12, 2136 (1995).

Proc. Roy. Soc. A (1)

E. Wolf, Proc. Roy. Soc. A 253, 349 (1959).
[CrossRef]

Proc. SPIE (1)

S. A. Prahl, M. Keijzer, S. Jacques, and A. J. Welch, Proc. SPIE 5, 102 (1989).

Science (2)

D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
[CrossRef]

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef]

Other (3)

J. B. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).

T. Wilson, Confocal Microscopy (Academic, 1990).

P. Török and F. J. Kao, Optical Imaging and Microscopy, 2nd ed. (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Light focusing in different media. (a) OPA (blue spots) in a medium with inhomogeneous absorption, which is equivalent to a thin absorbing medium. The black lines are 1D absorbing domains. (b) Illustration of light focusing in a medium in the case of LOPA (green spots) and TPA (red spots).

Fig. 2.
Fig. 2.

Schematic representation of a tightly focused light beam inside an absorbing medium. σ is the absorption coefficient of the medium. D is the interface between the transparent and absorbing media. d is the distance from the D plane to the focal plane of the OL. r is the distance from an arbitrary point on the D surface to an observation point located in the focusing region.

Fig. 3.
Fig. 3.

Numerical calculation of absorption effects on light propagation and intensity distribution in the focal region of a high NA OL (NA=1.3, n=1.515). (a) through (d) Intensity distributions obtained with different absorption coefficients (σ): 105462, 70000, 40000, 800cm1, respectively. (e) Normalized intensity (If/I0) at the focal plane (O) as a function of the absorption coefficient. If and I0 are the intensities obtained with (σ0) and without (σ=0) absorption medium, respectively.

Fig. 4.
Fig. 4.

(a) Focusing the light into an ultralow absorption medium at different d values: d1=5μm, d2=22.5μm, and d3=40μm. (b) Red curve: normalization of intensity (If/I0) at the focusing spot as a function of d. If and I0 are the intensities obtained with and without absorption medium, respectively. Dot curves: zoom on intensity profiles of the focusing spot along the optical axis, calculated at different d values. The results are simulated with σ=800m1, λ=532nm, NA=1.4 (n=1.515).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E=ikC2πΩT(s)A(s)e[ik(sxx+syy+szz)]dsxdsy,
r=(xx)2+(yy)2+(dz)2,
IOPA=EE*.

Metrics