Abstract

An all-fiber optical oscillator based on three nonlinear processes, namely stimulated Raman scattering and broad-band and narrow-band optical parametric amplification, is presented and experimentally characterized. The wavelength tuning is achieved by means of the time-dispersion technique and spans over 160 nm. Through the same technique a fast tunable optical frequency comb has been realized exploiting cascaded four-wave mixing.

© 2013 Optical Society of America

Full Article  |  PDF Article
Related Articles
Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip

Alessia Pasquazi, Lucia Caspani, Marco Peccianti, Matteo Clerici, Marcello Ferrera, Luca Razzari, David Duchesne, Brent E. Little, Sai T. Chu, David J. Moss, and Roberto Morandotti
Opt. Express 21(11) 13333-13341 (2013)

High-power mid-infrared frequency comb from a continuous-wave-pumped bulk optical parametric oscillator

Ville Ulvila, C. R. Phillips, Lauri Halonen, and Markku Vainio
Opt. Express 22(9) 10535-10543 (2014)

Direct fiber comb stabilization to a gas-filled hollow-core photonic crystal fiber

Shun Wu, Chenchen Wang, Coralie Fourcade-Dutin, Brian R. Washburn, Fetah Benabid, and Kristan L. Corwin
Opt. Express 22(19) 23704-23715 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription