Abstract

We report a multi-gigahertz (GHz) repetition-rate picosecond optical parametric oscillator (OPO) based on MgO:PPLN, synchronously pumped by a Yb-fiber laser operating at 80 MHz, where the multiplication of repetition frequency is achieved using fractional increment in the OPO cavity length. Using this simple technique, we achieve OPO operation up to the 88th harmonic of the pump laser frequency, corresponding to a repetition rate as high as 7 GHz. Deploying a 5% output coupler, we are able to extract up to 960 mW of average signal power at the fundamental with 600 mW at the 88th harmonic (7 GHz), using a pump power of 5.6 W. The measured relative standard deviations of the fundamental and fifth harmonic signal power are recorded to be 1.6% and 3.5%, respectively, while the fundamental signal pulse duration is measured to be 18.4 ps.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription