Abstract

We propose and demonstrate a technique to generate low-noise broadly tunable single-side-band microwaves using cascaded semiconductor optical amplifiers (SOAs) using no RF bias. The proposed technique uses no RF components and is based on polarization-state controlled gain-induced four-wave mixing in SOAs. Microwave generation from 40 to 875 GHz with a line-width 22KHz is experimentally demonstrated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
  2. J. Yao, J. Lightwave Technol. 27, 314 (2009).
    [CrossRef]
  3. J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, Electron. Lett. 28, 2309 (1992).
  4. P. O. Hedekvist, B.-E. Olsson, and A. Wiberg, J. Lightwave Technol. 22, 882 (2004).
    [CrossRef]
  5. L. A. Johansson and A. J. Seeds, J. Lightwave Technol. 21, 511 (2003).
    [CrossRef]
  6. J. Zhuang and S. Chan, Opt. Lett. 38, 344 (2013).
    [CrossRef]
  7. M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, Electron. Lett. 32, 1589 (1996).
    [CrossRef]
  8. X. Chen, Z. Deng, and J. P. Yao, IEEE Trans. Microwave Theory Tech. 54, 804 (2006).
  9. F. Li and A. S. Helmy, Opt. Lett. 38, 1241 (2013).
    [CrossRef]
  10. T. Okoshi, K. Kikuchi, and A. Nakayama, Electron. Lett. 16, 630 (1980).
    [CrossRef]
  11. M. Yoshida, A. Ono, and M. Nakazawa, Opt. Lett. 32, 3513 (2007).
    [CrossRef]

2013 (2)

2009 (1)

2007 (2)

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).

M. Yoshida, A. Ono, and M. Nakazawa, Opt. Lett. 32, 3513 (2007).
[CrossRef]

2006 (1)

X. Chen, Z. Deng, and J. P. Yao, IEEE Trans. Microwave Theory Tech. 54, 804 (2006).

2004 (1)

2003 (1)

1996 (1)

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, Electron. Lett. 32, 1589 (1996).
[CrossRef]

1992 (1)

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, Electron. Lett. 28, 2309 (1992).

1980 (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, Electron. Lett. 16, 630 (1980).
[CrossRef]

Capmany, J.

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).

Chan, S.

Chen, X.

X. Chen, Z. Deng, and J. P. Yao, IEEE Trans. Microwave Theory Tech. 54, 804 (2006).

Deng, Z.

X. Chen, Z. Deng, and J. P. Yao, IEEE Trans. Microwave Theory Tech. 54, 804 (2006).

Hedekvist, P. O.

Heidemann, R.

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, Electron. Lett. 28, 2309 (1992).

Helmy, A. S.

Hofstetter, R.

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, Electron. Lett. 28, 2309 (1992).

Hyodo, M.

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, Electron. Lett. 32, 1589 (1996).
[CrossRef]

Johansson, L. A.

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, Electron. Lett. 16, 630 (1980).
[CrossRef]

Lane, P. M.

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, Electron. Lett. 28, 2309 (1992).

Li, F.

Matsuura, S.

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, Electron. Lett. 32, 1589 (1996).
[CrossRef]

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, Electron. Lett. 16, 630 (1980).
[CrossRef]

Nakazawa, M.

Novak, D.

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).

O’Reilly, J. J.

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, Electron. Lett. 28, 2309 (1992).

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, Electron. Lett. 16, 630 (1980).
[CrossRef]

Olsson, B.-E.

Ono, A.

Onodera, N.

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, Electron. Lett. 32, 1589 (1996).
[CrossRef]

Sakai, K.

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, Electron. Lett. 32, 1589 (1996).
[CrossRef]

Seeds, A. J.

Tani, M.

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, Electron. Lett. 32, 1589 (1996).
[CrossRef]

Wiberg, A.

Yao, J.

Yao, J. P.

X. Chen, Z. Deng, and J. P. Yao, IEEE Trans. Microwave Theory Tech. 54, 804 (2006).

Yoshida, M.

Zhuang, J.

Electron. Lett. (3)

T. Okoshi, K. Kikuchi, and A. Nakayama, Electron. Lett. 16, 630 (1980).
[CrossRef]

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, Electron. Lett. 28, 2309 (1992).

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, Electron. Lett. 32, 1589 (1996).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

X. Chen, Z. Deng, and J. P. Yao, IEEE Trans. Microwave Theory Tech. 54, 804 (2006).

J. Lightwave Technol. (3)

Nat. Photonics (1)

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup for photonic microwave generation based on gain-induced FWM. BPF, bandpass filter; PC, polarization controller.

Fig. 2.
Fig. 2.

Measured profiles of spectrum characteristics of the output optical microwave (a) 40–875 GHz with two CW inputs. (b)–(d) Auto-correlation trace of the output of (b) 40 GHz, (c) 375 GHz, and (d) 875 GHz.

Fig. 3.
Fig. 3.

Phase noise measurement performed using a re-circulating delayed self-heterodyne interferometer. (a) Measured linewidth versus the microwave frequency. (b) Broad view of the recirculation delayed self-heterodyne interferometer (RDSHI) power spectrum. (c) RDSHI power spectrum of the 125 GHz frequency line along with the Voigt fitting.

Fig. 4.
Fig. 4.

Resolution of tunability. (a) Power spectra of the microwave signal at the output of the photodetector. (b) Broad view of power spectrum of microwave at 471 MHz.

Fig. 5.
Fig. 5.

Microwave stability measurement. The relative frequency fluctuation is defined as the ratio. (a) Frequency fluctuation versus time. (b) Estimated frequency fluctuation ratio versus frequency. The relative frequency fluctuation is defined as the ratio of the frequency fluctuation to the center microwave frequency generated.

Metrics