Abstract

We report on a fully fiber-integrated widely tunable optical parametric oscillator based on a photonic crystal fiber pumped by a picosecond ytterbium-doped fiber laser. The output wavelength of the oscillator can be continuously tuned from 898 to 1047 nm and from 1086 to 1277 nm, which is as wide as 340 nm. In particular, a larger Raman gain peak is simultaneously observed when the pump wavelength is far from the zero-dispersion wavelength in the normal-dispersion regime. The bandwidth of the output of the oscillator can be tuned by slightly adjusting the pump power.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Dunn and M. Ebrahimzadeh, Science 286, 1513 (1999).
    [CrossRef]
  2. J. E. Sharping, J. Lightwave Technol. 26, 2184 (2008).
    [CrossRef]
  3. C. J. S. de Matos, J. R. Taylor, and K. P. Hansen, Opt. Express 29, 983 (2004).
  4. D. K. Serkland and P. Kumar, Opt. Lett. 24, 92 (1999).
    [CrossRef]
  5. M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, IEEE J. Sel. Top. Quantum Electron. 10, 1133 (2004).
    [CrossRef]
  6. S. Oda, H. Sunnerud, and P. A. Andrekson, Opt. Lett. 32, 1776 (2007).
    [CrossRef]
  7. M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T.-E. Tsai, Opt. Lett. 27, 1439 (2002).
    [CrossRef]
  8. Y. Q. Xu, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, J. Opt. Soc. Am. B 26, 1351 (2009).
    [CrossRef]
  9. S. Yang, Y. Zhou, J. Li, and K. K. Y. Wong, J. Sel. Top. Quantum Electron. 15, 393 (2009).
  10. G. K. L. Wong, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, Opt. Express 15, 2947 (2007).
    [CrossRef]
  11. Y. Zhou, K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, Opt. Lett. 34, 989 (2009).
    [CrossRef]
  12. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 28, 2225 (2003).
    [CrossRef]
  13. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, Opt. Express 12, 299 (2004).
    [CrossRef]
  14. J. E. Sharping, M. A. Foster, A. L. Gaeta, J. Lasri, O. Lyngnes, and K. Vogel, Opt. Express 15, 1474 (2007).
    [CrossRef]
  15. Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, Opt. Lett. 30, 1234 (2005).
    [CrossRef]
  16. J. E. Sharping, J. R. Sanborn, M. A. Foster, D. Broaddus, and A. L. Gaeta, Opt. Express 16, 18050 (2008).
    [CrossRef]
  17. J. E. Sharping, C. Pailo, C. Gu, L. Kiani, and J. R. Sanborn, Opt. Express 18, 3911 (2010).
    [CrossRef]
  18. E. A. Zlobina, S. I. Kavlukov, and S. A. Babin, Opt. Express 21, 6777 (2013).
    [CrossRef]
  19. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [CrossRef]
  20. T. Torounidis, M. Karlsson, and P. A. Andrekson, J. Lightwave Technol. 23, 4067 (2005).
    [CrossRef]

2013 (1)

2010 (1)

2009 (3)

2008 (2)

2007 (3)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

2005 (2)

2004 (3)

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, Opt. Express 12, 299 (2004).
[CrossRef]

C. J. S. de Matos, J. R. Taylor, and K. P. Hansen, Opt. Express 29, 983 (2004).

M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, IEEE J. Sel. Top. Quantum Electron. 10, 1133 (2004).
[CrossRef]

2003 (1)

2002 (1)

1999 (2)

M. H. Dunn and M. Ebrahimzadeh, Science 286, 1513 (1999).
[CrossRef]

D. K. Serkland and P. Kumar, Opt. Lett. 24, 92 (1999).
[CrossRef]

Agrawal, G. P.

Andrekson, P. A.

Babin, S. A.

Biancalana, F.

Birks, T. A.

Broaddus, D.

Cheung, K. K. Y.

Chui, P. C.

Coen, S.

de Matos, C. J. S.

C. J. S. de Matos, J. R. Taylor, and K. P. Hansen, Opt. Express 29, 983 (2004).

Deng, Y.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Dunn, M. H.

M. H. Dunn and M. Ebrahimzadeh, Science 286, 1513 (1999).
[CrossRef]

Ebrahimzadeh, M.

M. H. Dunn and M. Ebrahimzadeh, Science 286, 1513 (1999).
[CrossRef]

Foster, M. A.

Gaeta, A. L.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Gu, C.

Hansen, K. P.

C. J. S. de Matos, J. R. Taylor, and K. P. Hansen, Opt. Express 29, 983 (2004).

Harvey, J. D.

Joly, N.

Karlsson, M.

Kavlukov, S. I.

Kazovsky, L. G.

M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, IEEE J. Sel. Top. Quantum Electron. 10, 1133 (2004).
[CrossRef]

M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T.-E. Tsai, Opt. Lett. 27, 1439 (2002).
[CrossRef]

Kiani, L.

Knight, J. C.

Knox, W. H.

Kumar, P.

Lasri, J.

Leonhardt, R.

Li, J.

S. Yang, Y. Zhou, J. Li, and K. K. Y. Wong, J. Sel. Top. Quantum Electron. 15, 393 (2009).

Lin, Q.

Lu, F.

Lyngnes, O.

Marhic, M. E.

M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, IEEE J. Sel. Top. Quantum Electron. 10, 1133 (2004).
[CrossRef]

M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T.-E. Tsai, Opt. Lett. 27, 1439 (2002).
[CrossRef]

Murdoch, S. G.

Oda, S.

Pailo, C.

Russell, P. St. J.

Sanborn, J. R.

Serkland, D. K.

Sharping, J. E.

Sunnerud, H.

Taylor, J. R.

C. J. S. de Matos, J. R. Taylor, and K. P. Hansen, Opt. Express 29, 983 (2004).

Torounidis, T.

Tsai, T.-E.

Vogel, K.

Wadsworth, W. J.

Wong, G. K. L.

Wong, K. K. Y.

Y. Zhou, K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, Opt. Lett. 34, 989 (2009).
[CrossRef]

S. Yang, Y. Zhou, J. Li, and K. K. Y. Wong, J. Sel. Top. Quantum Electron. 15, 393 (2009).

M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, IEEE J. Sel. Top. Quantum Electron. 10, 1133 (2004).
[CrossRef]

M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T.-E. Tsai, Opt. Lett. 27, 1439 (2002).
[CrossRef]

Xu, Y. Q.

Yang, S.

S. Yang, Y. Zhou, J. Li, and K. K. Y. Wong, J. Sel. Top. Quantum Electron. 15, 393 (2009).

Y. Zhou, K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, Opt. Lett. 34, 989 (2009).
[CrossRef]

Zhou, Y.

S. Yang, Y. Zhou, J. Li, and K. K. Y. Wong, J. Sel. Top. Quantum Electron. 15, 393 (2009).

Y. Zhou, K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, Opt. Lett. 34, 989 (2009).
[CrossRef]

Zlobina, E. A.

IEEE J. Sel. Top. Quantum Electron. (1)

M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, IEEE J. Sel. Top. Quantum Electron. 10, 1133 (2004).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

J. Sel. Top. Quantum Electron. (1)

S. Yang, Y. Zhou, J. Li, and K. K. Y. Wong, J. Sel. Top. Quantum Electron. 15, 393 (2009).

Opt. Express (7)

Opt. Lett. (6)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Science (1)

M. H. Dunn and M. Ebrahimzadeh, Science 286, 1513 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup of the FOPO. MLFL, mode-locked ytterbium-doped fiber laser; TBPF, tunable band-pass filter; WDM, wavelength division multiplex; YDF, ytterbium-doped fiber; PC, polarization controller; PCF, photonic crystal fiber; ODL, optical delay line; OSA, optical spectrum analyzer; DSA, digital serial analyzer.

Fig. 2.
Fig. 2.

Optical spectra of the output of the oscillator for pump wavelengths of 1066.3, 1062.8, 1060.0, 1059.0, and 1057.5 nm. For the pump wavelength of 1060.0 nm, the idler wave is chosen to synchronize with the pump. For the other pump wavelength, the signal wave is chosen to synchronize with the pump.

Fig. 3.
Fig. 3.

Optical spectra of the output of the oscillator for pump wavelengths of 1056 and 1053 nm. The peaks at 1110 nm are induced from the Raman gain. The peaks at 975 nm are from the semiconductor laser diode (LD laser) of 975 nm.

Fig. 4.
Fig. 4.

(a) Optical spectra of the output of the oscillator for the pump wavelength of 1057.8 nm with different pump power. (b) Bandwidth and peak gain of the signal and idler pulses as a function of the average pump power.

Fig. 5.
Fig. 5.

(a) Output pulse from the pump source and (b) signal pulse observed at the FOPO output for the pump wavelength of 1057.8 nm. The horizontal scales have the same value.

Fig. 6.
Fig. 6.

Average output powers of the signal and idler from the output of the FOPO as a function of the average pump power for the pump wavelength of 1057.8 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δβ+2γP=0,
Δβ=βs+βi2βp.

Metrics