Abstract

A simple scheme for the generation of full-duty-cycle triangular pulses is proposed and experimentally demonstrated using a dual-parallel Mach–Zehnder modulator driven by a single-frequency RF signal. By properly setting the bias voltages and the RF power, even-order harmonics in the optical intensity are suppressed, and the amplitude of the first-order harmonic is 9 times of that of the third-order harmonic. A periodical triangular pulse train is obtained in the time domain. 2.5, 5, and 10 GHz triangular pulse trains are experimentally generated, which verifies the feasibility of the proposed scheme.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Seeds and K. J. Williams, J. Lightwave Technol. 24, 4628 (2006).
    [CrossRef]
  2. A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, J. Opt. Soc. Am. B 26, 1492 (2009).
    [CrossRef]
  3. M. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nat. Photonics 4, 117 (2010).
    [CrossRef]
  4. J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
    [CrossRef]
  5. J. Ye, L. Yan, W. Pan, B. Luo, X. Zou, A. Yi, and S. Yao, Opt. Lett. 36, 1458 (2011).
    [CrossRef]
  6. J. Li, X. Zhang, B. Hraimel, T. Ning, L. Pei, and K. Wu, J. Lightwave Technol. 30, 1617 (2012).
    [CrossRef]
  7. J. Li, T. Ning, L. Pei, W. Jian, H. You, H. Chen, and C. Zhang, IEEE Photon. Technol. Lett. 25, 952 (2013).
    [CrossRef]
  8. J. Li, T. Ning, L. Pei, W. Peng, N. Jia, Q. Zhou, X. Wen, and J. Chou, Opt. Lett. 36, 3828 (2011).
    [CrossRef]
  9. Y. Li, J. Wu, Y. Ji, D. Kong, W. Li, X. Hong, H. Guo, Y. Zuo, and J. Lin, Opt. Express 20, 24754 (2012).
    [CrossRef]

2013

J. Li, T. Ning, L. Pei, W. Jian, H. You, H. Chen, and C. Zhang, IEEE Photon. Technol. Lett. 25, 952 (2013).
[CrossRef]

2012

2011

2010

M. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nat. Photonics 4, 117 (2010).
[CrossRef]

2009

2006

2003

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Bhamber, R. S.

Boscolo, S.

Chen, H.

J. Li, T. Ning, L. Pei, W. Jian, H. You, H. Chen, and C. Zhang, IEEE Photon. Technol. Lett. 25, 952 (2013).
[CrossRef]

Chou, J.

Guo, H.

Han, Y.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Hong, X.

Hraimel, B.

Jalali, B.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Ji, Y.

Jia, N.

Jian, W.

J. Li, T. Ning, L. Pei, W. Jian, H. You, H. Chen, and C. Zhang, IEEE Photon. Technol. Lett. 25, 952 (2013).
[CrossRef]

Khan, M.

M. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nat. Photonics 4, 117 (2010).
[CrossRef]

Kong, D.

Latkin, A. I.

Leaird, D. E.

M. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nat. Photonics 4, 117 (2010).
[CrossRef]

Li, J.

Li, W.

Li, Y.

Lin, J.

Luo, B.

Ning, T.

Pan, W.

Pei, L.

Peng, W.

Qi, M.

M. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nat. Photonics 4, 117 (2010).
[CrossRef]

Seeds, A. J.

Shen, H.

M. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nat. Photonics 4, 117 (2010).
[CrossRef]

Turitsyn, S. K.

Weiner, A. M.

M. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nat. Photonics 4, 117 (2010).
[CrossRef]

Wen, X.

Williams, K. J.

Wu, J.

Wu, K.

Xiao, S.

M. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nat. Photonics 4, 117 (2010).
[CrossRef]

Xuan, Y.

M. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nat. Photonics 4, 117 (2010).
[CrossRef]

Yan, L.

Yao, S.

Ye, J.

Yi, A.

You, H.

J. Li, T. Ning, L. Pei, W. Jian, H. You, H. Chen, and C. Zhang, IEEE Photon. Technol. Lett. 25, 952 (2013).
[CrossRef]

Zhang, C.

J. Li, T. Ning, L. Pei, W. Jian, H. You, H. Chen, and C. Zhang, IEEE Photon. Technol. Lett. 25, 952 (2013).
[CrossRef]

Zhang, X.

Zhao, L.

M. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nat. Photonics 4, 117 (2010).
[CrossRef]

Zhou, Q.

Zou, X.

Zuo, Y.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup of the proposed triangular pulse generator. LD, laser diode; PC, polarization controller; PD, photodetector; OSC, oscilloscope; ESA, electrical spectrum analyzer.

Fig. 2.
Fig. 2.

Simulation results. The amplitude and phase of (a) E1 and (b) E2, (c) the generated 5 GHz triangular pulse train, and (d) the electrical power spectrum.

Fig. 3.
Fig. 3.

(a) Waveform of the generated 5 GHz triangular pulse train, (b) the zoom-in view of the pulse, and (c) the electrical power spectrum of the triangular pulse train.

Fig. 4.
Fig. 4.

Waveforms and electrical power spectra of the generated triangular pulse trains with repetition rates of (a), (b) 2.5 GHz and (c), (d) 10 GHz.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E1=Ein2cos[π2Vπ(Vrf1(t)+Vbias1)]ejVbias12Vππ,
E2=Ein2cos[π2Vπ(Vrf2(t)+Vbias2)]ejVbias22Vππ,
E3=E1+ejVbias3VππE2.
I(t)=RE3E3*=R|Ein|22{cos2[π2Vπ(Vrf1(t)+Vbias1)]+cos2[π2Vπ(Vrf2(t)+Vbias2)]+2cos[π2Vπ(Vrf1(t)+Vbias1)]×cos[π2Vπ(Vrf2(t)+Vbias2)]cos(Vbias2Vbias1+2Vbias32Vππ)}.
I(t)=R|Ein|24{2sin[AπVπsin(2πft)]+sin[AπVπcos(2πft)]}=R|Ein|22{1n=1J2n1(AπVπ)sin[2π(2n1)ft]n=1(1)nJ2n1(AπVπ)cos[2π(2n1)ft]},
I(t)R|Ein|22{1+J1(AπVπ)cos(2πft)J1(AπVπ)sin(2πf)J3(AπVπ)cos(6πft)J3(AπVπ)sin(6πft)}=2R|Ein|22{22+J1(AπVπ)cos(2πft+π4)+J3(AπVπ)cos[3(2πft+π4)]}.
I(t)DC+cos(2πft+π4)+19cos[3(2πft+π4)].

Metrics