Abstract

Photonic-assisted microwave frequency multiplication with a tunable multiplication factor (MF) based on an optical comb generator and an embedded single-passband microwave photonic filter (MPF) is proposed and demonstrated. The optical comb is generated using two cascaded modulators which are driven by a microwave reference signal. By applying the optical comb to a photodetector, a fundamental frequency corresponding to the comb spacing and its harmonics is generated. Thanks to the embedded single-passband MPF, only one harmonic is selected by the single-passband MPF. Thus, a single-frequency frequency-multiplied microwave signal is generated. In the proposed system, the embedded single-passband MPF is formed by using a sliced broadband optical source and a section of dispersion-compensating fiber (DCF). By tuning the central frequency of the passband at a frequency corresponding to that of a specific harmonic, a microwave signal at that specific frequency is generated. The proposed system is experimentally demonstrated. A frequency-multiplied microwave signal with an MF from 1 to 5 is generated. The phase noise and frequency tunability of the generated microwave signal are also investigated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Seeds and K. J. Williams, J. Lightwave Technol. 24, 4628 (2006).
    [CrossRef]
  2. J. P. Yao, J. Lightwave Technol. 27, 314 (2009).
    [CrossRef]
  3. R. T. Ramos and A. J. Seeds, Electron. Lett. 28, 82 (1992).
    [CrossRef]
  4. L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, Electron. Lett. 19, 491 (1983).
    [CrossRef]
  5. J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, Electron. Lett. 28, 2309 (1992).
  6. J. J. O’Reilly and P. M. Lane, Electron. Lett. 30, 1329 (1994).
    [CrossRef]
  7. G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, IEEE Trans. Microwave Theory Tech. 53, 3090 (2005).
    [CrossRef]
  8. J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, IEEE Photon. Technol. Lett. 19, 1057 (2007).
    [CrossRef]
  9. B. Chen, S. Zheng, H. Chi, X. Zhang, and X. Jin, IEEE Photon. Technol. Lett. 20, 2057 (2008).
    [CrossRef]
  10. A. Wiberg, P. P. Millan, M. V. Andres, and P. O. Hedekvist, J. Lightwave Technol. 24, 329 (2006).
    [CrossRef]
  11. B. Vidal, Opt. Lett. 37, 5055 (2012).
    [CrossRef]
  12. S. Pan and J. P. Yao, IEEE Trans. Microwave Theory Tech. 58, 1967 (2010).
    [CrossRef]
  13. W. Li and J. P. Yao, IEEE Photon. J. 2, 954 (2010).
    [CrossRef]
  14. M. Qasymeh, W. Li, and J. P. Yao, IEEE Trans. Microwave Theory Tech. 59, 2987 (2011).
    [CrossRef]
  15. J. Mora, B. Ortega, A. Diez, J. L. Cruz, M. V. Andres, J. Capmany, and D. Pastor, J. Lightwave Technol. 24, 2500 (2006).
    [CrossRef]
  16. J. Mora, L. R. Chen, and J. Capmany, J. Lightwave Technol. 26, 2663 (2008).
    [CrossRef]
  17. Y. Dou, H. Zhang, and M. Yao, Opt. Lett. 36, 2749 (2011).
    [CrossRef]
  18. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weinner, Opt. Lett. 35, 3234 (2010).
    [CrossRef]
  19. S. Ozharar, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
    [CrossRef]
  20. R. T. Logan, in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2000), Vol. 3, p. 1741.
  21. J. Capmany, B. Ortega, and D. Pastor, J. Lightwave Technol. 24, 201 (2006).
    [CrossRef]

2012

2011

M. Qasymeh, W. Li, and J. P. Yao, IEEE Trans. Microwave Theory Tech. 59, 2987 (2011).
[CrossRef]

Y. Dou, H. Zhang, and M. Yao, Opt. Lett. 36, 2749 (2011).
[CrossRef]

2010

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weinner, Opt. Lett. 35, 3234 (2010).
[CrossRef]

S. Pan and J. P. Yao, IEEE Trans. Microwave Theory Tech. 58, 1967 (2010).
[CrossRef]

W. Li and J. P. Yao, IEEE Photon. J. 2, 954 (2010).
[CrossRef]

2009

2008

B. Chen, S. Zheng, H. Chi, X. Zhang, and X. Jin, IEEE Photon. Technol. Lett. 20, 2057 (2008).
[CrossRef]

S. Ozharar, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

J. Mora, L. R. Chen, and J. Capmany, J. Lightwave Technol. 26, 2663 (2008).
[CrossRef]

2007

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, IEEE Photon. Technol. Lett. 19, 1057 (2007).
[CrossRef]

2006

2005

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, IEEE Trans. Microwave Theory Tech. 53, 3090 (2005).
[CrossRef]

1994

J. J. O’Reilly and P. M. Lane, Electron. Lett. 30, 1329 (1994).
[CrossRef]

1992

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, Electron. Lett. 28, 2309 (1992).

R. T. Ramos and A. J. Seeds, Electron. Lett. 28, 82 (1992).
[CrossRef]

1983

L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, Electron. Lett. 19, 491 (1983).
[CrossRef]

Andres, M. V.

Bélisle, C.

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, IEEE Trans. Microwave Theory Tech. 53, 3090 (2005).
[CrossRef]

Bloom, D. M.

L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, Electron. Lett. 19, 491 (1983).
[CrossRef]

Capmany, J.

Chen, B.

B. Chen, S. Zheng, H. Chi, X. Zhang, and X. Jin, IEEE Photon. Technol. Lett. 20, 2057 (2008).
[CrossRef]

Chen, H.

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, IEEE Photon. Technol. Lett. 19, 1057 (2007).
[CrossRef]

Chen, L. R.

Chen, M.

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, IEEE Photon. Technol. Lett. 19, 1057 (2007).
[CrossRef]

Chi, H.

B. Chen, S. Zheng, H. Chi, X. Zhang, and X. Jin, IEEE Photon. Technol. Lett. 20, 2057 (2008).
[CrossRef]

Cruz, J. L.

Delfyett, P. J.

S. Ozharar, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

Diez, A.

Dou, Y.

Gee, S.

S. Ozharar, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

Goldberg, L.

L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, Electron. Lett. 19, 491 (1983).
[CrossRef]

Hedekvist, P. O.

Heidemann, R.

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, Electron. Lett. 28, 2309 (1992).

Hofstetter, R.

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, Electron. Lett. 28, 2309 (1992).

Jin, X.

B. Chen, S. Zheng, H. Chi, X. Zhang, and X. Jin, IEEE Photon. Technol. Lett. 20, 2057 (2008).
[CrossRef]

Lane, P. M.

J. J. O’Reilly and P. M. Lane, Electron. Lett. 30, 1329 (1994).
[CrossRef]

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, Electron. Lett. 28, 2309 (1992).

Leaird, D. E.

Li, W.

M. Qasymeh, W. Li, and J. P. Yao, IEEE Trans. Microwave Theory Tech. 59, 2987 (2011).
[CrossRef]

W. Li and J. P. Yao, IEEE Photon. J. 2, 954 (2010).
[CrossRef]

Logan, R. T.

R. T. Logan, in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2000), Vol. 3, p. 1741.

Long, C. M.

Millan, P. P.

Mora, J.

O’Reilly, J. J.

J. J. O’Reilly and P. M. Lane, Electron. Lett. 30, 1329 (1994).
[CrossRef]

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, Electron. Lett. 28, 2309 (1992).

Ortega, B.

Ozdur, I.

S. Ozharar, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

Ozharar, S.

S. Ozharar, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

Pan, S.

S. Pan and J. P. Yao, IEEE Trans. Microwave Theory Tech. 58, 1967 (2010).
[CrossRef]

Paquet, S.

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, IEEE Trans. Microwave Theory Tech. 53, 3090 (2005).
[CrossRef]

Pastor, D.

Qasymeh, M.

M. Qasymeh, W. Li, and J. P. Yao, IEEE Trans. Microwave Theory Tech. 59, 2987 (2011).
[CrossRef]

Qi, G.

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, IEEE Trans. Microwave Theory Tech. 53, 3090 (2005).
[CrossRef]

Ramos, R. T.

R. T. Ramos and A. J. Seeds, Electron. Lett. 28, 82 (1992).
[CrossRef]

Seeds, A. J.

A. J. Seeds and K. J. Williams, J. Lightwave Technol. 24, 4628 (2006).
[CrossRef]

R. T. Ramos and A. J. Seeds, Electron. Lett. 28, 82 (1992).
[CrossRef]

Seregelyi, J.

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, IEEE Trans. Microwave Theory Tech. 53, 3090 (2005).
[CrossRef]

Supradeepa, V. R.

Taylor, H. F.

L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, Electron. Lett. 19, 491 (1983).
[CrossRef]

Vidal, B.

Wang, T.

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, IEEE Photon. Technol. Lett. 19, 1057 (2007).
[CrossRef]

Weinner, A. M.

Weller, J. F.

L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, Electron. Lett. 19, 491 (1983).
[CrossRef]

Wiberg, A.

Williams, K. J.

Wu, R.

Xie, S.

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, IEEE Photon. Technol. Lett. 19, 1057 (2007).
[CrossRef]

Yao, J. P.

M. Qasymeh, W. Li, and J. P. Yao, IEEE Trans. Microwave Theory Tech. 59, 2987 (2011).
[CrossRef]

S. Pan and J. P. Yao, IEEE Trans. Microwave Theory Tech. 58, 1967 (2010).
[CrossRef]

W. Li and J. P. Yao, IEEE Photon. J. 2, 954 (2010).
[CrossRef]

J. P. Yao, J. Lightwave Technol. 27, 314 (2009).
[CrossRef]

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, IEEE Trans. Microwave Theory Tech. 53, 3090 (2005).
[CrossRef]

Yao, M.

Zhang, H.

Zhang, J.

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, IEEE Photon. Technol. Lett. 19, 1057 (2007).
[CrossRef]

Zhang, X.

B. Chen, S. Zheng, H. Chi, X. Zhang, and X. Jin, IEEE Photon. Technol. Lett. 20, 2057 (2008).
[CrossRef]

Zheng, S.

B. Chen, S. Zheng, H. Chi, X. Zhang, and X. Jin, IEEE Photon. Technol. Lett. 20, 2057 (2008).
[CrossRef]

Electron. Lett.

R. T. Ramos and A. J. Seeds, Electron. Lett. 28, 82 (1992).
[CrossRef]

L. Goldberg, H. F. Taylor, J. F. Weller, and D. M. Bloom, Electron. Lett. 19, 491 (1983).
[CrossRef]

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, Electron. Lett. 28, 2309 (1992).

J. J. O’Reilly and P. M. Lane, Electron. Lett. 30, 1329 (1994).
[CrossRef]

IEEE Photon. J.

W. Li and J. P. Yao, IEEE Photon. J. 2, 954 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Ozharar, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, IEEE Photon. Technol. Lett. 19, 1057 (2007).
[CrossRef]

B. Chen, S. Zheng, H. Chi, X. Zhang, and X. Jin, IEEE Photon. Technol. Lett. 20, 2057 (2008).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, IEEE Trans. Microwave Theory Tech. 53, 3090 (2005).
[CrossRef]

M. Qasymeh, W. Li, and J. P. Yao, IEEE Trans. Microwave Theory Tech. 59, 2987 (2011).
[CrossRef]

S. Pan and J. P. Yao, IEEE Trans. Microwave Theory Tech. 58, 1967 (2010).
[CrossRef]

J. Lightwave Technol.

Opt. Lett.

Other

R. T. Logan, in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2000), Vol. 3, p. 1741.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of the proposed photonic-assisted microwave frequency multiplication system. ASE, amplified spontaneous emission; PC, polarization controller; TOA, tunable optical attenuator; VODL, variable optical delay line; SBOS, sliced broadband optical source; MZM, Mach–Zehnder modulator; PM, phase modulator; OCG, optical comb generator; MSG, microwave signal generator; EPS, electrical phase shifter; EPD, electrical power divider; EDFA, erbium-doped fiber amplifier; DCF, dispersion compensating fiber; PD, photodetector; ESA, electrical spectrum analyser.

Fig. 2.
Fig. 2.

Principal of the photonic-assisted microwave frequency multiplication.

Fig. 3.
Fig. 3.

Optical power spectrum of the SBOS.

Fig. 4.
Fig. 4.

Frequency response of the MPF. The central frequency of the passband is tuned from 2 to 8 GHz.

Fig. 5.
Fig. 5.

(a) Generated harmonics when the DCF is not incorporated in the system. (b)–(f) Generated frequency-multiplied signals with an MF tunable from 1 to 5. The resolution bandwidth (RBW) and video bandwidth (VBW) are both 3 MHz for the main figures. The RBW and VBW are both 910 Hz for the insets.

Fig. 6.
Fig. 6.

Phase noise of the generated frequency-multiplied microwave signals.

Fig. 7.
Fig. 7.

Frequency tunability of the generated microwave signal for an MF of 4.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

fp=1χΔλ,

Metrics