Abstract

We present a method for obtaining coherent Rayleigh–Brillouin scattering (CRBS) spectra on timescales of hundreds of nanoseconds using rapidly chirped, pulsed, optical lattices. This enables us to transfer the spectral profile to a temporal profile which can be easily recorded on a single shot of an oscilloscope. These spectra are demonstrated to have sufficient signal-to-noise ratio to study CRBS models over a wide range of gas densities.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. E. Hagenlocker and W. G. Rado, Appl. Phys. Lett. 7, 236 (1965).
    [CrossRef]
  2. D. H. Rank, T. A. Wiggins, R. V. Wick, D. P. Eastman, and A. H. Guenther, J. Opt. Soc. Am. 56, 174 (1966).
    [CrossRef]
  3. R. P. Sandoval and R. L. Armstrong, Phys. Rev. A 13, 752 (1976).
    [CrossRef]
  4. Q. H. Lao, P. E. Schoen, and B. Chu, J. Chem. Phys. 64, 3547 (1976).
    [CrossRef]
  5. M. Nelkin and S. Yip, Phys. Fluids 9, 380 (1966).
    [CrossRef]
  6. J. Strutt, Philos. Mag. 47(5), 375 (1899).
  7. E. Gross, Nature 126, 201 (1930).
    [CrossRef]
  8. L. Brillouin, Annales de Physique (Paris) 17, 88 (1922).
  9. X. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. Lett. 89, 183001 (2002).
    [CrossRef]
  10. X. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. A 69, 033814 (2004).
    [CrossRef]
  11. A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, J. Chem. Phys. 133, 164315 (2010).
    [CrossRef]
  12. W. Marques, J. Stat. Mech. 2007, P03013 (2007).
    [CrossRef]
  13. A. Manteghi, N. J. Dam, A. S. Meijer, A. S. de Wijn, and W. van de Water, Phys. Rev. Lett. 107, 173903 (2011).
    [CrossRef]
  14. R. W. Boyd, Nonlinear Optics, 3rd ed. (Elsevier, 2008).
  15. H. T. Bookey, A. I. Bishop, and P. F. Barker, Opt. Express 14, 3461 (2006).
    [CrossRef]
  16. B. M. Cornella, S. F. Gimelshein, M. N. Shneider, T. C. Lilly, and A. D. Ketsdever, Opt. Express 20, 12975 (2012).
    [CrossRef]
  17. A. Stampanoni-Panariello, B. Hemmerling, and W. Hubschmid, Phys. Rev. A 51, 655 (1995).
    [CrossRef]
  18. N. Coppendale, L. Wang, P. Douglas, and P. F. Barker, Appl. Phys. B 104, 569 (2011).
    [CrossRef]
  19. M. S. Fee, K. Danzmann, and S. Chu, Phys. Rev. A 45, 4911 (1992).
    [CrossRef]
  20. P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 511 (1954).
    [CrossRef]
  21. X. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. A 71, 045801 (2005).
    [CrossRef]
  22. A. Gerakis, M. N. Shneider, and P. F. Barker, Opt. Express 19, 24046 (2011).
    [CrossRef]

2012

2011

A. Manteghi, N. J. Dam, A. S. Meijer, A. S. de Wijn, and W. van de Water, Phys. Rev. Lett. 107, 173903 (2011).
[CrossRef]

N. Coppendale, L. Wang, P. Douglas, and P. F. Barker, Appl. Phys. B 104, 569 (2011).
[CrossRef]

A. Gerakis, M. N. Shneider, and P. F. Barker, Opt. Express 19, 24046 (2011).
[CrossRef]

2010

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, J. Chem. Phys. 133, 164315 (2010).
[CrossRef]

2007

W. Marques, J. Stat. Mech. 2007, P03013 (2007).
[CrossRef]

2006

2005

X. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. A 71, 045801 (2005).
[CrossRef]

2004

X. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. A 69, 033814 (2004).
[CrossRef]

2002

X. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. Lett. 89, 183001 (2002).
[CrossRef]

1995

A. Stampanoni-Panariello, B. Hemmerling, and W. Hubschmid, Phys. Rev. A 51, 655 (1995).
[CrossRef]

1992

M. S. Fee, K. Danzmann, and S. Chu, Phys. Rev. A 45, 4911 (1992).
[CrossRef]

1976

R. P. Sandoval and R. L. Armstrong, Phys. Rev. A 13, 752 (1976).
[CrossRef]

Q. H. Lao, P. E. Schoen, and B. Chu, J. Chem. Phys. 64, 3547 (1976).
[CrossRef]

1966

1965

E. E. Hagenlocker and W. G. Rado, Appl. Phys. Lett. 7, 236 (1965).
[CrossRef]

1954

P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 511 (1954).
[CrossRef]

1930

E. Gross, Nature 126, 201 (1930).
[CrossRef]

1922

L. Brillouin, Annales de Physique (Paris) 17, 88 (1922).

1899

J. Strutt, Philos. Mag. 47(5), 375 (1899).

Armstrong, R. L.

R. P. Sandoval and R. L. Armstrong, Phys. Rev. A 13, 752 (1976).
[CrossRef]

Barker, P. F.

Bhatnagar, P. L.

P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 511 (1954).
[CrossRef]

Bishop, A. I.

Bookey, H. T.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Elsevier, 2008).

Brillouin, L.

L. Brillouin, Annales de Physique (Paris) 17, 88 (1922).

Chu, B.

Q. H. Lao, P. E. Schoen, and B. Chu, J. Chem. Phys. 64, 3547 (1976).
[CrossRef]

Chu, S.

M. S. Fee, K. Danzmann, and S. Chu, Phys. Rev. A 45, 4911 (1992).
[CrossRef]

Coppendale, N.

N. Coppendale, L. Wang, P. Douglas, and P. F. Barker, Appl. Phys. B 104, 569 (2011).
[CrossRef]

Cornella, B. M.

Dam, N. J.

A. Manteghi, N. J. Dam, A. S. Meijer, A. S. de Wijn, and W. van de Water, Phys. Rev. Lett. 107, 173903 (2011).
[CrossRef]

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, J. Chem. Phys. 133, 164315 (2010).
[CrossRef]

Danzmann, K.

M. S. Fee, K. Danzmann, and S. Chu, Phys. Rev. A 45, 4911 (1992).
[CrossRef]

de Wijn, A. S.

A. Manteghi, N. J. Dam, A. S. Meijer, A. S. de Wijn, and W. van de Water, Phys. Rev. Lett. 107, 173903 (2011).
[CrossRef]

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, J. Chem. Phys. 133, 164315 (2010).
[CrossRef]

Douglas, P.

N. Coppendale, L. Wang, P. Douglas, and P. F. Barker, Appl. Phys. B 104, 569 (2011).
[CrossRef]

Eastman, D. P.

Fee, M. S.

M. S. Fee, K. Danzmann, and S. Chu, Phys. Rev. A 45, 4911 (1992).
[CrossRef]

Gerakis, A.

Gimelshein, S. F.

Gross, E.

E. Gross, Nature 126, 201 (1930).
[CrossRef]

Gross, E. P.

P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 511 (1954).
[CrossRef]

Guenther, A. H.

Hagenlocker, E. E.

E. E. Hagenlocker and W. G. Rado, Appl. Phys. Lett. 7, 236 (1965).
[CrossRef]

Hemmerling, B.

A. Stampanoni-Panariello, B. Hemmerling, and W. Hubschmid, Phys. Rev. A 51, 655 (1995).
[CrossRef]

Hubschmid, W.

A. Stampanoni-Panariello, B. Hemmerling, and W. Hubschmid, Phys. Rev. A 51, 655 (1995).
[CrossRef]

Ketsdever, A. D.

Krook, M.

P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 511 (1954).
[CrossRef]

Lao, Q. H.

Q. H. Lao, P. E. Schoen, and B. Chu, J. Chem. Phys. 64, 3547 (1976).
[CrossRef]

Lilly, T. C.

Manteghi, A.

A. Manteghi, N. J. Dam, A. S. Meijer, A. S. de Wijn, and W. van de Water, Phys. Rev. Lett. 107, 173903 (2011).
[CrossRef]

Marques, W.

W. Marques, J. Stat. Mech. 2007, P03013 (2007).
[CrossRef]

Meijer, A. S.

A. Manteghi, N. J. Dam, A. S. Meijer, A. S. de Wijn, and W. van de Water, Phys. Rev. Lett. 107, 173903 (2011).
[CrossRef]

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, J. Chem. Phys. 133, 164315 (2010).
[CrossRef]

Miles, R. B.

X. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. A 71, 045801 (2005).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. A 69, 033814 (2004).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. Lett. 89, 183001 (2002).
[CrossRef]

Nelkin, M.

M. Nelkin and S. Yip, Phys. Fluids 9, 380 (1966).
[CrossRef]

Pan, X.

X. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. A 71, 045801 (2005).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. A 69, 033814 (2004).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. Lett. 89, 183001 (2002).
[CrossRef]

Peters, M. F. E.

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, J. Chem. Phys. 133, 164315 (2010).
[CrossRef]

Rado, W. G.

E. E. Hagenlocker and W. G. Rado, Appl. Phys. Lett. 7, 236 (1965).
[CrossRef]

Rank, D. H.

Sandoval, R. P.

R. P. Sandoval and R. L. Armstrong, Phys. Rev. A 13, 752 (1976).
[CrossRef]

Schoen, P. E.

Q. H. Lao, P. E. Schoen, and B. Chu, J. Chem. Phys. 64, 3547 (1976).
[CrossRef]

Shneider, M. N.

B. M. Cornella, S. F. Gimelshein, M. N. Shneider, T. C. Lilly, and A. D. Ketsdever, Opt. Express 20, 12975 (2012).
[CrossRef]

A. Gerakis, M. N. Shneider, and P. F. Barker, Opt. Express 19, 24046 (2011).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. A 71, 045801 (2005).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. A 69, 033814 (2004).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. Lett. 89, 183001 (2002).
[CrossRef]

Stampanoni-Panariello, A.

A. Stampanoni-Panariello, B. Hemmerling, and W. Hubschmid, Phys. Rev. A 51, 655 (1995).
[CrossRef]

Strutt, J.

J. Strutt, Philos. Mag. 47(5), 375 (1899).

van de Water, W.

A. Manteghi, N. J. Dam, A. S. Meijer, A. S. de Wijn, and W. van de Water, Phys. Rev. Lett. 107, 173903 (2011).
[CrossRef]

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, J. Chem. Phys. 133, 164315 (2010).
[CrossRef]

Wang, L.

N. Coppendale, L. Wang, P. Douglas, and P. F. Barker, Appl. Phys. B 104, 569 (2011).
[CrossRef]

Wick, R. V.

Wiggins, T. A.

Yip, S.

M. Nelkin and S. Yip, Phys. Fluids 9, 380 (1966).
[CrossRef]

Annales de Physique (Paris)

L. Brillouin, Annales de Physique (Paris) 17, 88 (1922).

Appl. Phys. B

N. Coppendale, L. Wang, P. Douglas, and P. F. Barker, Appl. Phys. B 104, 569 (2011).
[CrossRef]

Appl. Phys. Lett.

E. E. Hagenlocker and W. G. Rado, Appl. Phys. Lett. 7, 236 (1965).
[CrossRef]

J. Chem. Phys.

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, J. Chem. Phys. 133, 164315 (2010).
[CrossRef]

Q. H. Lao, P. E. Schoen, and B. Chu, J. Chem. Phys. 64, 3547 (1976).
[CrossRef]

J. Opt. Soc. Am.

J. Stat. Mech.

W. Marques, J. Stat. Mech. 2007, P03013 (2007).
[CrossRef]

Nature

E. Gross, Nature 126, 201 (1930).
[CrossRef]

Opt. Express

Philos. Mag.

J. Strutt, Philos. Mag. 47(5), 375 (1899).

Phys. Fluids

M. Nelkin and S. Yip, Phys. Fluids 9, 380 (1966).
[CrossRef]

Phys. Rev.

P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 511 (1954).
[CrossRef]

Phys. Rev. A

X. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. A 71, 045801 (2005).
[CrossRef]

M. S. Fee, K. Danzmann, and S. Chu, Phys. Rev. A 45, 4911 (1992).
[CrossRef]

R. P. Sandoval and R. L. Armstrong, Phys. Rev. A 13, 752 (1976).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. A 69, 033814 (2004).
[CrossRef]

A. Stampanoni-Panariello, B. Hemmerling, and W. Hubschmid, Phys. Rev. A 51, 655 (1995).
[CrossRef]

Phys. Rev. Lett.

X. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. Lett. 89, 183001 (2002).
[CrossRef]

A. Manteghi, N. J. Dam, A. S. Meijer, A. S. de Wijn, and W. van de Water, Phys. Rev. Lett. 107, 173903 (2011).
[CrossRef]

Other

R. W. Boyd, Nonlinear Optics, 3rd ed. (Elsevier, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Optical setup used for single-shot CRBS. A periodic density perturbation is induced via the dipole force by the two pump beams, while the probe beam is Bragg scattered by the perturbation to form the signal beam.

Fig. 2.
Fig. 2.

Diagram showing the resultant optical lattice created by the laser system. (a) The voltage applied to the LiTaO3 EOM which frequency chirps the microchip laser. (b) This occurs when the second pulse is passing through the pulse shaper. (c) Intensity profile of an individual pulse from one of the two arms of the Nd:YAG amplifier. (d) Heterodyned signal from both arms as a function of time showing the phase difference as function of time between the two beams. (e) Black trace showing a plot of the derived frequency difference between the two beams as a function of time using the data in (d). The dashed trace in the same graph is a linear fit. Frequency differences of up to 1.4 GHz and beam energies up to 700mJ/pulse can be achieved with this system. The pulses shown in (b) and (c) are recorded in different parts of the laser system. Thus, the times in (b) and (c) are different and should not be related.

Fig. 3.
Fig. 3.

Graph (a) shows the recorded beat pattern between the two lattice beams which is used to determine the frequency difference and lattice velocity as a function of time in the CRBS experiments. Graphs (b) and (c) show the CRBS experimental spectra (black traces) and the theoretical calculations (dashed traces) for CO2 gas for pressures of 700 and 270 Torr, respectively. The graphs contain both normalized single-shot CRBS spectra (gray trace) and spectra averaged over 50 laser pulses (black trace).

Fig. 4.
Fig. 4.

Experimentally recorded CRBS spectra profile as a function of pressure for CO2 (top) and Xe (bottom) gases at room temperature. Approximately 100 different pressures for each gas were used to create the 3D plot. The spectrum at each pressure is normalized to the peak value to compare the line shape change with pressure.

Metrics