Abstract

We present a technique for standoff trace chemical sensing that is based on the dependence of excited electronic state lifetimes on the amount of internal vibrational energy. The feasibility of the technique is demonstrated using N,N-dimethylisopropylamine (DMIPA). Time-resolved measurements show that the lifetime of the S1 state in DMIPA exponentially decreases with the amount of vibrational energy. This property is employed to acquire molecular spectral signatures. Two laser pulses are used: one ionizes the molecule through the S1 state; the other alters the S1 state lifetime by depositing energy into vibrations. Reduction of the S1 state lifetime decreases ionization efficiency that is observed by probing the laser-induced plasma with microwave radiation.

© 2013 Optical Society of America

Full Article  |  PDF Article
Related Articles
Rotationally resolved fluorescence-dip and ion-dip spectra of single rovibronic states of benzene

Th. Weber, E. Riedle, and H. J. Neusser
J. Opt. Soc. Am. B 7(9) 1875-1883 (1990)

Molecular multiphoton ionization spectroscopy

Philip M. Johnson
Appl. Opt. 19(23) 3920-3925 (1980)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription