Abstract

We present a technique for standoff trace chemical sensing that is based on the dependence of excited electronic state lifetimes on the amount of internal vibrational energy. The feasibility of the technique is demonstrated using N,N-dimethylisopropylamine (DMIPA). Time-resolved measurements show that the lifetime of the S1 state in DMIPA exponentially decreases with the amount of vibrational energy. This property is employed to acquire molecular spectral signatures. Two laser pulses are used: one ionizes the molecule through the S1 state; the other alters the S1 state lifetime by depositing energy into vibrations. Reduction of the S1 state lifetime decreases ionization efficiency that is observed by probing the laser-induced plasma with microwave radiation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, 1999).
  2. D. J. Phillips, E. A. Tanner, F. C. De Lucia, and H. O. Everitt, Phys. Rev. A 85, 052507 (2012).
    [CrossRef]
  3. P. Muller, B. A. Bushaw, K. Blaum, S. Diel, Ch. Geppert, A. Nahler, N. Trautmann, and K. Wendt, Fresenius J. Anal. Chem. 370, 508 (2001).
  4. M. Ito, T. Ebata, and N. Mikami, Annu. Rev. Anal. Chem. 39, 123 (1988).
    [CrossRef]
  5. W. C. Ho, C. J. Pursell, D. P. Weliky, K. Takagi, and T. Oka, J. Chem. Phys. 93, 87 (1990).
    [CrossRef]
  6. M. Quack and F. Merkt, Handbook of High-Resolution Spectroscopy (Wiley2011), pp. 1911–1941.
  7. W. Bronner, P. Oesterlin, and M. Schellhorn, Appl. Phys. B 34, 11 (1984).
    [CrossRef]
  8. M. Silva, R. Jongma, R. W. Field, and A. M. Wodtke, Annu. Rev. Phys. Chem. 52, 811 (2001).
    [CrossRef]
  9. H.-L. Dai and R. W. Field, Molecular Dynamics and Spectroscopy by Stimulated Emission Pumping (World Scientific, 1995).
  10. D. E. Cooper, C. M. Klimcak, and J. E. Wessel, Phys. Rev. Lett. 46, 324 (1981).
    [CrossRef]
  11. B. A. Jacobson, J. A. Guest, F. A. Novak, and S. Rice, J. Chem. Phys. 87, 269 (1987).
    [CrossRef]
  12. S. K. Kulkarni and J. E. Kenny, J. Chem. Phys. 89, 4441 (1988).
    [CrossRef]
  13. D. F. Heller, K. F. Freed, and W. Gelbart, J. Chem. Phys. 56, 2309 (1972).
    [CrossRef]
  14. S. Kuhlman, The Non-Ergodic Nature of Internal Conversion. An Experimental and Theoretical Approach (Springer, 2013).
  15. J. L. Gosselin and P. M. Weber, J. Phys. Chem. A 109, 4899 (2005).
    [CrossRef]
  16. J. D. Cardoza, F. M. Rudakov, N. Hansen, and P. M. Weber, J. Electron Spectrosc. Relat. Phenom. 65, 15 (2008).
  17. F. Rudakov and P. M. Weber, J. Chem. Phys. 136, 134303 (2012).
    [CrossRef]
  18. S. Deb, B. A. Bayes, M. P. Minitti, and P. M. Weber, J. Phys. Chem. A 115, 1804 (2011).
    [CrossRef]
  19. F. Rudakov and Z. Zhang, Opt. Lett. 37, 145 (2012).
    [CrossRef]
  20. C. P. Schick, S. D. Carpenter, and P. M. Weber, J. Phys. Chem. A 103, 10470 (1999).
    [CrossRef]
  21. B. Kim, N. Thantu, and P. M. Weber, J. Chem. Phys. 97, 5384 (1992).
    [CrossRef]
  22. S. Deb, M. P. Minitti, and P. M. Weber, J. Chem. Phys. 135, 044319 (2011).
    [CrossRef]
  23. J. L. Gosselin, M. P. Minitti, F. M. Rudakov, T. I. Sølling, and P. M. Weber, J. Phys. Chem. A 110, 4251 (2006).
    [CrossRef]
  24. NIST Web book http://webbook.nist.gov/chemistry/ .
  25. Here and below 1 sigma are given for the error bars.
  26. In addition to the vibrational energy of the molecules in the beam.
  27. Arkema Inc. http://www.arkema-inc.com/tds/1461.pdf .
  28. M. N. Shneider, Z. Zhang, and R. B. Miles, J. Appl. Phys. 102, 123103 (2007).
    [CrossRef]
  29. Z. Zhang, M. N. Shneider, and R. B. Miles, Phys. Rev. Lett. 98, 265005 (2007).
    [CrossRef]
  30. M. N. Shneider and R. B. Miles, J. Appl. Phys. 98, 033301 (2005).
    [CrossRef]
  31. A. Dogariu and R. B. Miles, Appl. Opt. 50, A68 (2011).
    [CrossRef]
  32. T. Kakinuma, M. Fujii, and M. Ito, Chem. Phys. Lett. 140, 427 (1987).
    [CrossRef]

2012 (3)

D. J. Phillips, E. A. Tanner, F. C. De Lucia, and H. O. Everitt, Phys. Rev. A 85, 052507 (2012).
[CrossRef]

F. Rudakov and P. M. Weber, J. Chem. Phys. 136, 134303 (2012).
[CrossRef]

F. Rudakov and Z. Zhang, Opt. Lett. 37, 145 (2012).
[CrossRef]

2011 (3)

A. Dogariu and R. B. Miles, Appl. Opt. 50, A68 (2011).
[CrossRef]

S. Deb, B. A. Bayes, M. P. Minitti, and P. M. Weber, J. Phys. Chem. A 115, 1804 (2011).
[CrossRef]

S. Deb, M. P. Minitti, and P. M. Weber, J. Chem. Phys. 135, 044319 (2011).
[CrossRef]

2008 (1)

J. D. Cardoza, F. M. Rudakov, N. Hansen, and P. M. Weber, J. Electron Spectrosc. Relat. Phenom. 65, 15 (2008).

2007 (2)

M. N. Shneider, Z. Zhang, and R. B. Miles, J. Appl. Phys. 102, 123103 (2007).
[CrossRef]

Z. Zhang, M. N. Shneider, and R. B. Miles, Phys. Rev. Lett. 98, 265005 (2007).
[CrossRef]

2006 (1)

J. L. Gosselin, M. P. Minitti, F. M. Rudakov, T. I. Sølling, and P. M. Weber, J. Phys. Chem. A 110, 4251 (2006).
[CrossRef]

2005 (2)

J. L. Gosselin and P. M. Weber, J. Phys. Chem. A 109, 4899 (2005).
[CrossRef]

M. N. Shneider and R. B. Miles, J. Appl. Phys. 98, 033301 (2005).
[CrossRef]

2001 (2)

P. Muller, B. A. Bushaw, K. Blaum, S. Diel, Ch. Geppert, A. Nahler, N. Trautmann, and K. Wendt, Fresenius J. Anal. Chem. 370, 508 (2001).

M. Silva, R. Jongma, R. W. Field, and A. M. Wodtke, Annu. Rev. Phys. Chem. 52, 811 (2001).
[CrossRef]

1999 (1)

C. P. Schick, S. D. Carpenter, and P. M. Weber, J. Phys. Chem. A 103, 10470 (1999).
[CrossRef]

1992 (1)

B. Kim, N. Thantu, and P. M. Weber, J. Chem. Phys. 97, 5384 (1992).
[CrossRef]

1990 (1)

W. C. Ho, C. J. Pursell, D. P. Weliky, K. Takagi, and T. Oka, J. Chem. Phys. 93, 87 (1990).
[CrossRef]

1988 (2)

M. Ito, T. Ebata, and N. Mikami, Annu. Rev. Anal. Chem. 39, 123 (1988).
[CrossRef]

S. K. Kulkarni and J. E. Kenny, J. Chem. Phys. 89, 4441 (1988).
[CrossRef]

1987 (2)

B. A. Jacobson, J. A. Guest, F. A. Novak, and S. Rice, J. Chem. Phys. 87, 269 (1987).
[CrossRef]

T. Kakinuma, M. Fujii, and M. Ito, Chem. Phys. Lett. 140, 427 (1987).
[CrossRef]

1984 (1)

W. Bronner, P. Oesterlin, and M. Schellhorn, Appl. Phys. B 34, 11 (1984).
[CrossRef]

1981 (1)

D. E. Cooper, C. M. Klimcak, and J. E. Wessel, Phys. Rev. Lett. 46, 324 (1981).
[CrossRef]

1972 (1)

D. F. Heller, K. F. Freed, and W. Gelbart, J. Chem. Phys. 56, 2309 (1972).
[CrossRef]

Bayes, B. A.

S. Deb, B. A. Bayes, M. P. Minitti, and P. M. Weber, J. Phys. Chem. A 115, 1804 (2011).
[CrossRef]

Blaum, K.

P. Muller, B. A. Bushaw, K. Blaum, S. Diel, Ch. Geppert, A. Nahler, N. Trautmann, and K. Wendt, Fresenius J. Anal. Chem. 370, 508 (2001).

Bronner, W.

W. Bronner, P. Oesterlin, and M. Schellhorn, Appl. Phys. B 34, 11 (1984).
[CrossRef]

Bushaw, B. A.

P. Muller, B. A. Bushaw, K. Blaum, S. Diel, Ch. Geppert, A. Nahler, N. Trautmann, and K. Wendt, Fresenius J. Anal. Chem. 370, 508 (2001).

Cardoza, J. D.

J. D. Cardoza, F. M. Rudakov, N. Hansen, and P. M. Weber, J. Electron Spectrosc. Relat. Phenom. 65, 15 (2008).

Carpenter, S. D.

C. P. Schick, S. D. Carpenter, and P. M. Weber, J. Phys. Chem. A 103, 10470 (1999).
[CrossRef]

Cooper, D. E.

D. E. Cooper, C. M. Klimcak, and J. E. Wessel, Phys. Rev. Lett. 46, 324 (1981).
[CrossRef]

Dai, H.-L.

H.-L. Dai and R. W. Field, Molecular Dynamics and Spectroscopy by Stimulated Emission Pumping (World Scientific, 1995).

De Lucia, F. C.

D. J. Phillips, E. A. Tanner, F. C. De Lucia, and H. O. Everitt, Phys. Rev. A 85, 052507 (2012).
[CrossRef]

Deb, S.

S. Deb, B. A. Bayes, M. P. Minitti, and P. M. Weber, J. Phys. Chem. A 115, 1804 (2011).
[CrossRef]

S. Deb, M. P. Minitti, and P. M. Weber, J. Chem. Phys. 135, 044319 (2011).
[CrossRef]

Diel, S.

P. Muller, B. A. Bushaw, K. Blaum, S. Diel, Ch. Geppert, A. Nahler, N. Trautmann, and K. Wendt, Fresenius J. Anal. Chem. 370, 508 (2001).

Dogariu, A.

Ebata, T.

M. Ito, T. Ebata, and N. Mikami, Annu. Rev. Anal. Chem. 39, 123 (1988).
[CrossRef]

Everitt, H. O.

D. J. Phillips, E. A. Tanner, F. C. De Lucia, and H. O. Everitt, Phys. Rev. A 85, 052507 (2012).
[CrossRef]

Field, R. W.

M. Silva, R. Jongma, R. W. Field, and A. M. Wodtke, Annu. Rev. Phys. Chem. 52, 811 (2001).
[CrossRef]

H.-L. Dai and R. W. Field, Molecular Dynamics and Spectroscopy by Stimulated Emission Pumping (World Scientific, 1995).

Freed, K. F.

D. F. Heller, K. F. Freed, and W. Gelbart, J. Chem. Phys. 56, 2309 (1972).
[CrossRef]

Fujii, M.

T. Kakinuma, M. Fujii, and M. Ito, Chem. Phys. Lett. 140, 427 (1987).
[CrossRef]

Gelbart, W.

D. F. Heller, K. F. Freed, and W. Gelbart, J. Chem. Phys. 56, 2309 (1972).
[CrossRef]

Geppert, Ch.

P. Muller, B. A. Bushaw, K. Blaum, S. Diel, Ch. Geppert, A. Nahler, N. Trautmann, and K. Wendt, Fresenius J. Anal. Chem. 370, 508 (2001).

Gosselin, J. L.

J. L. Gosselin, M. P. Minitti, F. M. Rudakov, T. I. Sølling, and P. M. Weber, J. Phys. Chem. A 110, 4251 (2006).
[CrossRef]

J. L. Gosselin and P. M. Weber, J. Phys. Chem. A 109, 4899 (2005).
[CrossRef]

Guest, J. A.

B. A. Jacobson, J. A. Guest, F. A. Novak, and S. Rice, J. Chem. Phys. 87, 269 (1987).
[CrossRef]

Hansen, N.

J. D. Cardoza, F. M. Rudakov, N. Hansen, and P. M. Weber, J. Electron Spectrosc. Relat. Phenom. 65, 15 (2008).

Heller, D. F.

D. F. Heller, K. F. Freed, and W. Gelbart, J. Chem. Phys. 56, 2309 (1972).
[CrossRef]

Ho, W. C.

W. C. Ho, C. J. Pursell, D. P. Weliky, K. Takagi, and T. Oka, J. Chem. Phys. 93, 87 (1990).
[CrossRef]

Ito, M.

M. Ito, T. Ebata, and N. Mikami, Annu. Rev. Anal. Chem. 39, 123 (1988).
[CrossRef]

T. Kakinuma, M. Fujii, and M. Ito, Chem. Phys. Lett. 140, 427 (1987).
[CrossRef]

Jacobson, B. A.

B. A. Jacobson, J. A. Guest, F. A. Novak, and S. Rice, J. Chem. Phys. 87, 269 (1987).
[CrossRef]

Jongma, R.

M. Silva, R. Jongma, R. W. Field, and A. M. Wodtke, Annu. Rev. Phys. Chem. 52, 811 (2001).
[CrossRef]

Kakinuma, T.

T. Kakinuma, M. Fujii, and M. Ito, Chem. Phys. Lett. 140, 427 (1987).
[CrossRef]

Kenny, J. E.

S. K. Kulkarni and J. E. Kenny, J. Chem. Phys. 89, 4441 (1988).
[CrossRef]

Kim, B.

B. Kim, N. Thantu, and P. M. Weber, J. Chem. Phys. 97, 5384 (1992).
[CrossRef]

Klimcak, C. M.

D. E. Cooper, C. M. Klimcak, and J. E. Wessel, Phys. Rev. Lett. 46, 324 (1981).
[CrossRef]

Kuhlman, S.

S. Kuhlman, The Non-Ergodic Nature of Internal Conversion. An Experimental and Theoretical Approach (Springer, 2013).

Kulkarni, S. K.

S. K. Kulkarni and J. E. Kenny, J. Chem. Phys. 89, 4441 (1988).
[CrossRef]

Merkt, F.

M. Quack and F. Merkt, Handbook of High-Resolution Spectroscopy (Wiley2011), pp. 1911–1941.

Mikami, N.

M. Ito, T. Ebata, and N. Mikami, Annu. Rev. Anal. Chem. 39, 123 (1988).
[CrossRef]

Miles, R. B.

A. Dogariu and R. B. Miles, Appl. Opt. 50, A68 (2011).
[CrossRef]

Z. Zhang, M. N. Shneider, and R. B. Miles, Phys. Rev. Lett. 98, 265005 (2007).
[CrossRef]

M. N. Shneider, Z. Zhang, and R. B. Miles, J. Appl. Phys. 102, 123103 (2007).
[CrossRef]

M. N. Shneider and R. B. Miles, J. Appl. Phys. 98, 033301 (2005).
[CrossRef]

Minitti, M. P.

S. Deb, B. A. Bayes, M. P. Minitti, and P. M. Weber, J. Phys. Chem. A 115, 1804 (2011).
[CrossRef]

S. Deb, M. P. Minitti, and P. M. Weber, J. Chem. Phys. 135, 044319 (2011).
[CrossRef]

J. L. Gosselin, M. P. Minitti, F. M. Rudakov, T. I. Sølling, and P. M. Weber, J. Phys. Chem. A 110, 4251 (2006).
[CrossRef]

Muller, P.

P. Muller, B. A. Bushaw, K. Blaum, S. Diel, Ch. Geppert, A. Nahler, N. Trautmann, and K. Wendt, Fresenius J. Anal. Chem. 370, 508 (2001).

Nahler, A.

P. Muller, B. A. Bushaw, K. Blaum, S. Diel, Ch. Geppert, A. Nahler, N. Trautmann, and K. Wendt, Fresenius J. Anal. Chem. 370, 508 (2001).

Novak, F. A.

B. A. Jacobson, J. A. Guest, F. A. Novak, and S. Rice, J. Chem. Phys. 87, 269 (1987).
[CrossRef]

Oesterlin, P.

W. Bronner, P. Oesterlin, and M. Schellhorn, Appl. Phys. B 34, 11 (1984).
[CrossRef]

Oka, T.

W. C. Ho, C. J. Pursell, D. P. Weliky, K. Takagi, and T. Oka, J. Chem. Phys. 93, 87 (1990).
[CrossRef]

Phillips, D. J.

D. J. Phillips, E. A. Tanner, F. C. De Lucia, and H. O. Everitt, Phys. Rev. A 85, 052507 (2012).
[CrossRef]

Pursell, C. J.

W. C. Ho, C. J. Pursell, D. P. Weliky, K. Takagi, and T. Oka, J. Chem. Phys. 93, 87 (1990).
[CrossRef]

Quack, M.

M. Quack and F. Merkt, Handbook of High-Resolution Spectroscopy (Wiley2011), pp. 1911–1941.

Rice, S.

B. A. Jacobson, J. A. Guest, F. A. Novak, and S. Rice, J. Chem. Phys. 87, 269 (1987).
[CrossRef]

Rudakov, F.

F. Rudakov and P. M. Weber, J. Chem. Phys. 136, 134303 (2012).
[CrossRef]

F. Rudakov and Z. Zhang, Opt. Lett. 37, 145 (2012).
[CrossRef]

Rudakov, F. M.

J. D. Cardoza, F. M. Rudakov, N. Hansen, and P. M. Weber, J. Electron Spectrosc. Relat. Phenom. 65, 15 (2008).

J. L. Gosselin, M. P. Minitti, F. M. Rudakov, T. I. Sølling, and P. M. Weber, J. Phys. Chem. A 110, 4251 (2006).
[CrossRef]

Schellhorn, M.

W. Bronner, P. Oesterlin, and M. Schellhorn, Appl. Phys. B 34, 11 (1984).
[CrossRef]

Schick, C. P.

C. P. Schick, S. D. Carpenter, and P. M. Weber, J. Phys. Chem. A 103, 10470 (1999).
[CrossRef]

Shah, J.

J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, 1999).

Shneider, M. N.

Z. Zhang, M. N. Shneider, and R. B. Miles, Phys. Rev. Lett. 98, 265005 (2007).
[CrossRef]

M. N. Shneider, Z. Zhang, and R. B. Miles, J. Appl. Phys. 102, 123103 (2007).
[CrossRef]

M. N. Shneider and R. B. Miles, J. Appl. Phys. 98, 033301 (2005).
[CrossRef]

Silva, M.

M. Silva, R. Jongma, R. W. Field, and A. M. Wodtke, Annu. Rev. Phys. Chem. 52, 811 (2001).
[CrossRef]

Sølling, T. I.

J. L. Gosselin, M. P. Minitti, F. M. Rudakov, T. I. Sølling, and P. M. Weber, J. Phys. Chem. A 110, 4251 (2006).
[CrossRef]

Takagi, K.

W. C. Ho, C. J. Pursell, D. P. Weliky, K. Takagi, and T. Oka, J. Chem. Phys. 93, 87 (1990).
[CrossRef]

Tanner, E. A.

D. J. Phillips, E. A. Tanner, F. C. De Lucia, and H. O. Everitt, Phys. Rev. A 85, 052507 (2012).
[CrossRef]

Thantu, N.

B. Kim, N. Thantu, and P. M. Weber, J. Chem. Phys. 97, 5384 (1992).
[CrossRef]

Trautmann, N.

P. Muller, B. A. Bushaw, K. Blaum, S. Diel, Ch. Geppert, A. Nahler, N. Trautmann, and K. Wendt, Fresenius J. Anal. Chem. 370, 508 (2001).

Weber, P. M.

F. Rudakov and P. M. Weber, J. Chem. Phys. 136, 134303 (2012).
[CrossRef]

S. Deb, M. P. Minitti, and P. M. Weber, J. Chem. Phys. 135, 044319 (2011).
[CrossRef]

S. Deb, B. A. Bayes, M. P. Minitti, and P. M. Weber, J. Phys. Chem. A 115, 1804 (2011).
[CrossRef]

J. D. Cardoza, F. M. Rudakov, N. Hansen, and P. M. Weber, J. Electron Spectrosc. Relat. Phenom. 65, 15 (2008).

J. L. Gosselin, M. P. Minitti, F. M. Rudakov, T. I. Sølling, and P. M. Weber, J. Phys. Chem. A 110, 4251 (2006).
[CrossRef]

J. L. Gosselin and P. M. Weber, J. Phys. Chem. A 109, 4899 (2005).
[CrossRef]

C. P. Schick, S. D. Carpenter, and P. M. Weber, J. Phys. Chem. A 103, 10470 (1999).
[CrossRef]

B. Kim, N. Thantu, and P. M. Weber, J. Chem. Phys. 97, 5384 (1992).
[CrossRef]

Weliky, D. P.

W. C. Ho, C. J. Pursell, D. P. Weliky, K. Takagi, and T. Oka, J. Chem. Phys. 93, 87 (1990).
[CrossRef]

Wendt, K.

P. Muller, B. A. Bushaw, K. Blaum, S. Diel, Ch. Geppert, A. Nahler, N. Trautmann, and K. Wendt, Fresenius J. Anal. Chem. 370, 508 (2001).

Wessel, J. E.

D. E. Cooper, C. M. Klimcak, and J. E. Wessel, Phys. Rev. Lett. 46, 324 (1981).
[CrossRef]

Wodtke, A. M.

M. Silva, R. Jongma, R. W. Field, and A. M. Wodtke, Annu. Rev. Phys. Chem. 52, 811 (2001).
[CrossRef]

Zhang, Z.

F. Rudakov and Z. Zhang, Opt. Lett. 37, 145 (2012).
[CrossRef]

Z. Zhang, M. N. Shneider, and R. B. Miles, Phys. Rev. Lett. 98, 265005 (2007).
[CrossRef]

M. N. Shneider, Z. Zhang, and R. B. Miles, J. Appl. Phys. 102, 123103 (2007).
[CrossRef]

Annu. Rev. Anal. Chem. (1)

M. Ito, T. Ebata, and N. Mikami, Annu. Rev. Anal. Chem. 39, 123 (1988).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

M. Silva, R. Jongma, R. W. Field, and A. M. Wodtke, Annu. Rev. Phys. Chem. 52, 811 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

W. Bronner, P. Oesterlin, and M. Schellhorn, Appl. Phys. B 34, 11 (1984).
[CrossRef]

Chem. Phys. Lett. (1)

T. Kakinuma, M. Fujii, and M. Ito, Chem. Phys. Lett. 140, 427 (1987).
[CrossRef]

Fresenius J. Anal. Chem. (1)

P. Muller, B. A. Bushaw, K. Blaum, S. Diel, Ch. Geppert, A. Nahler, N. Trautmann, and K. Wendt, Fresenius J. Anal. Chem. 370, 508 (2001).

J. Appl. Phys. (2)

M. N. Shneider, Z. Zhang, and R. B. Miles, J. Appl. Phys. 102, 123103 (2007).
[CrossRef]

M. N. Shneider and R. B. Miles, J. Appl. Phys. 98, 033301 (2005).
[CrossRef]

J. Chem. Phys. (7)

B. Kim, N. Thantu, and P. M. Weber, J. Chem. Phys. 97, 5384 (1992).
[CrossRef]

S. Deb, M. P. Minitti, and P. M. Weber, J. Chem. Phys. 135, 044319 (2011).
[CrossRef]

W. C. Ho, C. J. Pursell, D. P. Weliky, K. Takagi, and T. Oka, J. Chem. Phys. 93, 87 (1990).
[CrossRef]

B. A. Jacobson, J. A. Guest, F. A. Novak, and S. Rice, J. Chem. Phys. 87, 269 (1987).
[CrossRef]

S. K. Kulkarni and J. E. Kenny, J. Chem. Phys. 89, 4441 (1988).
[CrossRef]

D. F. Heller, K. F. Freed, and W. Gelbart, J. Chem. Phys. 56, 2309 (1972).
[CrossRef]

F. Rudakov and P. M. Weber, J. Chem. Phys. 136, 134303 (2012).
[CrossRef]

J. Electron Spectrosc. Relat. Phenom. (1)

J. D. Cardoza, F. M. Rudakov, N. Hansen, and P. M. Weber, J. Electron Spectrosc. Relat. Phenom. 65, 15 (2008).

J. Phys. Chem. A (4)

J. L. Gosselin, M. P. Minitti, F. M. Rudakov, T. I. Sølling, and P. M. Weber, J. Phys. Chem. A 110, 4251 (2006).
[CrossRef]

S. Deb, B. A. Bayes, M. P. Minitti, and P. M. Weber, J. Phys. Chem. A 115, 1804 (2011).
[CrossRef]

C. P. Schick, S. D. Carpenter, and P. M. Weber, J. Phys. Chem. A 103, 10470 (1999).
[CrossRef]

J. L. Gosselin and P. M. Weber, J. Phys. Chem. A 109, 4899 (2005).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

D. J. Phillips, E. A. Tanner, F. C. De Lucia, and H. O. Everitt, Phys. Rev. A 85, 052507 (2012).
[CrossRef]

Phys. Rev. Lett. (2)

D. E. Cooper, C. M. Klimcak, and J. E. Wessel, Phys. Rev. Lett. 46, 324 (1981).
[CrossRef]

Z. Zhang, M. N. Shneider, and R. B. Miles, Phys. Rev. Lett. 98, 265005 (2007).
[CrossRef]

Other (8)

NIST Web book http://webbook.nist.gov/chemistry/ .

Here and below 1 sigma are given for the error bars.

In addition to the vibrational energy of the molecules in the beam.

Arkema Inc. http://www.arkema-inc.com/tds/1461.pdf .

S. Kuhlman, The Non-Ergodic Nature of Internal Conversion. An Experimental and Theoretical Approach (Springer, 2013).

J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, 1999).

M. Quack and F. Merkt, Handbook of High-Resolution Spectroscopy (Wiley2011), pp. 1911–1941.

H.-L. Dai and R. W. Field, Molecular Dynamics and Spectroscopy by Stimulated Emission Pumping (World Scientific, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Ion dip spectroscopy ionization schemes: (a) Ion dip Raman spectroscopy. (b) Stimulate emission pumping.

Fig. 2.
Fig. 2.

Dependence of the lifetime of the 3s (S1) state on the amount of vibrational energy available to the molecule. (a) Ionization efficiency as a function of time delay for different pump photon energies. (b) S1 state decay rate as a function of the excess vibrational energy for pump photon wavelengths below 240 nm. An exponential dependence of the rate on the internal energy is observed.

Fig. 3.
Fig. 3.

Schematic diagram of the experimental setup. (a) Laser design. (b) Ionization scheme. (c) Microwave design. The molecules are ionized through the 3s Rydberg state using 266 nm photons produced by the Nd:YAG laser. A tunable wavelength laser pulse (produced by the OPO) deposits energy into vibrational degrees of freedom via transitions to higher lying Rydberg states followed by internal conversion back to the 3s state. The energy deposited into vibrational results in a reduction of the lifetime of the 3s state and a corresponding dip in ionization efficiency. Ionization is probed by microwave scattering from the plasma produced by photoionization.

Fig. 4.
Fig. 4.

DMIPA Rydberg spectrum probed by microwave scattering from the laser-induced plasma. The scattering intensity is normalized to the intensity produced by 266 nm photons only. The most intense dips in ionization efficiency are attributed to transitions between the 3s and np Rydberg states.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ=14.6(3.8)+170000(95000)*exp(Evib0.20(0.016)),
E=E3sbRy(nδl,m)2,

Metrics