Abstract

We investigate the gain saturation characteristics in a backward-pumped Raman-assisted fiber optical parametric amplifier (FOPA). It is experimentally observed that the onset of saturation occurs at a higher input power as compared to the case of a conventional FOPA with the same unsaturated gain. The output power under strong saturation is also enhanced. Simulations are performed on the power profile of the parametric pump to explain the distinct saturation behaviors. The monotonic increase of the parametric pump power in the Raman-assisted FOPA results in highly efficient power transfer to the signal while it suppresses the signal conversion to high-order idlers in the saturation regime.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Torounidis and P. Andrekson, IEEE Photon. Technol. Lett. 19, 650 (2007).
    [CrossRef]
  2. M. N. Islam, IEEE J. Sel. Top. Quantum Electron. 8, 548 (2002).
    [CrossRef]
  3. J. F. L. Freitas, M. B. Costa e Silva, S. R. Lüthi, and A. S. L. Gomes, Opt. Commun. 255, 314 (2005).
    [CrossRef]
  4. S. Peiris, N. Madamopoulos, N. Antoniades, M. Ummy, M. Ali, and R. Dorsinville, Appl. Opt. 51, 7834 (2012).
    [CrossRef]
  5. H. K. Y. Cheung, K. K. Y. Wong, N. Wong, and M. E. Marhic, Proc. SPIE 6103, 61030S1 (2006).
    [CrossRef]
  6. S. H. Wang, L. Xu, and P. K. A. Wai, in Proceedings of the IEEE Conference on Opto-Electronics and Communications (IEEE, 2009).
  7. S. H. Wang, L. Xu, P. K. A. Wai, and H. Y. Tam, J. Lightwave Technol. 29, 1172 (2011).
    [CrossRef]
  8. F. Da Ros, R. Borkowski, D. Zibar, and C. Peucheret, in European Conference and Exhibition on Optical Communication, OSA Technical Digest Series (Optical Society of America, 2012), paper We.2.A.3.
  9. Z. Lali-Dastjerdi, F. Da Ros, K. Rottwitt, M. Galili, and C. Peucheret, in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2012).
  10. M. Matsumoto and T. Kamio, IEEE J. Sel. Top. Quantum Electron. 14, 610 (2008).
    [CrossRef]
  11. M. Gao, J. Kurumida, and S. Namiki, Opt. Lett. 35, 3468 (2010).
    [CrossRef]
  12. K. Inoue and T. Mukai, Opt. Lett. 26, 10 (2001).
    [CrossRef]
  13. J. Bromage, J. Lightwave Technol. 22, 79 (2004).
    [CrossRef]
  14. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).
  15. K. Inoue, IEEE Photon. Technol. Lett. 13, 338 (2001).
    [CrossRef]

2012 (1)

2011 (1)

2010 (1)

2008 (1)

M. Matsumoto and T. Kamio, IEEE J. Sel. Top. Quantum Electron. 14, 610 (2008).
[CrossRef]

2007 (1)

T. Torounidis and P. Andrekson, IEEE Photon. Technol. Lett. 19, 650 (2007).
[CrossRef]

2006 (1)

H. K. Y. Cheung, K. K. Y. Wong, N. Wong, and M. E. Marhic, Proc. SPIE 6103, 61030S1 (2006).
[CrossRef]

2005 (1)

J. F. L. Freitas, M. B. Costa e Silva, S. R. Lüthi, and A. S. L. Gomes, Opt. Commun. 255, 314 (2005).
[CrossRef]

2004 (1)

2002 (1)

M. N. Islam, IEEE J. Sel. Top. Quantum Electron. 8, 548 (2002).
[CrossRef]

2001 (2)

K. Inoue and T. Mukai, Opt. Lett. 26, 10 (2001).
[CrossRef]

K. Inoue, IEEE Photon. Technol. Lett. 13, 338 (2001).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).

Ali, M.

Andrekson, P.

T. Torounidis and P. Andrekson, IEEE Photon. Technol. Lett. 19, 650 (2007).
[CrossRef]

Antoniades, N.

Borkowski, R.

F. Da Ros, R. Borkowski, D. Zibar, and C. Peucheret, in European Conference and Exhibition on Optical Communication, OSA Technical Digest Series (Optical Society of America, 2012), paper We.2.A.3.

Bromage, J.

Cheung, H. K. Y.

H. K. Y. Cheung, K. K. Y. Wong, N. Wong, and M. E. Marhic, Proc. SPIE 6103, 61030S1 (2006).
[CrossRef]

Costa e Silva, M. B.

J. F. L. Freitas, M. B. Costa e Silva, S. R. Lüthi, and A. S. L. Gomes, Opt. Commun. 255, 314 (2005).
[CrossRef]

Da Ros, F.

F. Da Ros, R. Borkowski, D. Zibar, and C. Peucheret, in European Conference and Exhibition on Optical Communication, OSA Technical Digest Series (Optical Society of America, 2012), paper We.2.A.3.

Z. Lali-Dastjerdi, F. Da Ros, K. Rottwitt, M. Galili, and C. Peucheret, in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2012).

Dorsinville, R.

Freitas, J. F. L.

J. F. L. Freitas, M. B. Costa e Silva, S. R. Lüthi, and A. S. L. Gomes, Opt. Commun. 255, 314 (2005).
[CrossRef]

Galili, M.

Z. Lali-Dastjerdi, F. Da Ros, K. Rottwitt, M. Galili, and C. Peucheret, in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2012).

Gao, M.

Gomes, A. S. L.

J. F. L. Freitas, M. B. Costa e Silva, S. R. Lüthi, and A. S. L. Gomes, Opt. Commun. 255, 314 (2005).
[CrossRef]

Inoue, K.

K. Inoue and T. Mukai, Opt. Lett. 26, 10 (2001).
[CrossRef]

K. Inoue, IEEE Photon. Technol. Lett. 13, 338 (2001).
[CrossRef]

Islam, M. N.

M. N. Islam, IEEE J. Sel. Top. Quantum Electron. 8, 548 (2002).
[CrossRef]

Kamio, T.

M. Matsumoto and T. Kamio, IEEE J. Sel. Top. Quantum Electron. 14, 610 (2008).
[CrossRef]

Kurumida, J.

Lali-Dastjerdi, Z.

Z. Lali-Dastjerdi, F. Da Ros, K. Rottwitt, M. Galili, and C. Peucheret, in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2012).

Lüthi, S. R.

J. F. L. Freitas, M. B. Costa e Silva, S. R. Lüthi, and A. S. L. Gomes, Opt. Commun. 255, 314 (2005).
[CrossRef]

Madamopoulos, N.

Marhic, M. E.

H. K. Y. Cheung, K. K. Y. Wong, N. Wong, and M. E. Marhic, Proc. SPIE 6103, 61030S1 (2006).
[CrossRef]

Matsumoto, M.

M. Matsumoto and T. Kamio, IEEE J. Sel. Top. Quantum Electron. 14, 610 (2008).
[CrossRef]

Mukai, T.

Namiki, S.

Peiris, S.

Peucheret, C.

Z. Lali-Dastjerdi, F. Da Ros, K. Rottwitt, M. Galili, and C. Peucheret, in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2012).

F. Da Ros, R. Borkowski, D. Zibar, and C. Peucheret, in European Conference and Exhibition on Optical Communication, OSA Technical Digest Series (Optical Society of America, 2012), paper We.2.A.3.

Rottwitt, K.

Z. Lali-Dastjerdi, F. Da Ros, K. Rottwitt, M. Galili, and C. Peucheret, in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2012).

Tam, H. Y.

Torounidis, T.

T. Torounidis and P. Andrekson, IEEE Photon. Technol. Lett. 19, 650 (2007).
[CrossRef]

Ummy, M.

Wai, P. K. A.

S. H. Wang, L. Xu, P. K. A. Wai, and H. Y. Tam, J. Lightwave Technol. 29, 1172 (2011).
[CrossRef]

S. H. Wang, L. Xu, and P. K. A. Wai, in Proceedings of the IEEE Conference on Opto-Electronics and Communications (IEEE, 2009).

Wang, S. H.

S. H. Wang, L. Xu, P. K. A. Wai, and H. Y. Tam, J. Lightwave Technol. 29, 1172 (2011).
[CrossRef]

S. H. Wang, L. Xu, and P. K. A. Wai, in Proceedings of the IEEE Conference on Opto-Electronics and Communications (IEEE, 2009).

Wong, K. K. Y.

H. K. Y. Cheung, K. K. Y. Wong, N. Wong, and M. E. Marhic, Proc. SPIE 6103, 61030S1 (2006).
[CrossRef]

Wong, N.

H. K. Y. Cheung, K. K. Y. Wong, N. Wong, and M. E. Marhic, Proc. SPIE 6103, 61030S1 (2006).
[CrossRef]

Xu, L.

S. H. Wang, L. Xu, P. K. A. Wai, and H. Y. Tam, J. Lightwave Technol. 29, 1172 (2011).
[CrossRef]

S. H. Wang, L. Xu, and P. K. A. Wai, in Proceedings of the IEEE Conference on Opto-Electronics and Communications (IEEE, 2009).

Zibar, D.

F. Da Ros, R. Borkowski, D. Zibar, and C. Peucheret, in European Conference and Exhibition on Optical Communication, OSA Technical Digest Series (Optical Society of America, 2012), paper We.2.A.3.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (2)

M. N. Islam, IEEE J. Sel. Top. Quantum Electron. 8, 548 (2002).
[CrossRef]

M. Matsumoto and T. Kamio, IEEE J. Sel. Top. Quantum Electron. 14, 610 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Torounidis and P. Andrekson, IEEE Photon. Technol. Lett. 19, 650 (2007).
[CrossRef]

K. Inoue, IEEE Photon. Technol. Lett. 13, 338 (2001).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Commun. (1)

J. F. L. Freitas, M. B. Costa e Silva, S. R. Lüthi, and A. S. L. Gomes, Opt. Commun. 255, 314 (2005).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (1)

H. K. Y. Cheung, K. K. Y. Wong, N. Wong, and M. E. Marhic, Proc. SPIE 6103, 61030S1 (2006).
[CrossRef]

Other (4)

S. H. Wang, L. Xu, and P. K. A. Wai, in Proceedings of the IEEE Conference on Opto-Electronics and Communications (IEEE, 2009).

F. Da Ros, R. Borkowski, D. Zibar, and C. Peucheret, in European Conference and Exhibition on Optical Communication, OSA Technical Digest Series (Optical Society of America, 2012), paper We.2.A.3.

Z. Lali-Dastjerdi, F. Da Ros, K. Rottwitt, M. Galili, and C. Peucheret, in Proceedings of IEEE Conference on Lasers and Electro-Optics (IEEE, 2012).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup of the Raman-assisted FOPA. TL, tunable laser; PM, phase modulator; PRBS, pseudorandom binary sequence; EDFA, erbium-doped fiber amplifier; OBPF, optical bandpass filter; CIR, optical circulator; VOA, variable optical attenuator; HNLF, highly nonlinear fiber; OSA, optical spectrum analyzer.

Fig. 2.
Fig. 2.

On–off gain of the Raman-assisted FOPA and the conventional FOPA as a function of the input power.

Fig. 3.
Fig. 3.

Output signal power against the input. Blue triangles and red diamonds are experimental data obtained from the Raman-assisted FOPA and the conventional FOPA, respectively. Blue and red solid curves are simulation results.

Fig. 4.
Fig. 4.

Profiles of the parametric pump power and the signal gain along the fiber for an input signal power of (a) 25dBm, (b) 5dBm, and (c) 2dBm. Blue and red curves are the results of the Raman-assisted FOPA and the conventional FOPA, respectively.

Fig. 5.
Fig. 5.

(a) Output spectra at an input signal power of 8dBm. (b) Power difference between the high-order idlers obtained from the Raman-assisted FOPA and the conventional FOPA as a function of the input signal power.

Fig. 6.
Fig. 6.

Power profiles of the signal and the high-order idler along the fiber. The input signal power is 8dBm. The blue and red curves are the results of the Raman-assisted FOPA and the conventional FOPA, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

dPStokesdz=αPStokes+γRPRPStokes,
dPRdz=αRPR+(λStokes/λR)γRPStokesPR,
Azn=14in+1βnn!nAtn+α2A=iγ|A|2A+γR2PRA,

Metrics