Abstract

We proposed a new premixing method for photon-counting chirped amplitude modulation lidar (PCCAML). Earlier studies used the counting results of the returned signal detected by a Geiger mode avalanche photodiode detector (Gm-APD) to mix with the reference signal, called the postmixing method. We use an alternative method known as the premixing method, in which the reference signal is used to directly modulate the sampling gate width of the Gm-APD, and the mixing of the returned signal and the reference signal is completed before the Gm-APD. This premixing method is more flexible and may perform better than the postmixing method in terms of signal-to-noise ratio by cutting down a separated mixer commonly used in the postmixing lidar system. Furthermore, this premixing method lowers the demand for the sampling frequency of the Gm-APD. It allows the use of a much wider modulation bandwidth to improve the range accuracy and resolution. To the best of our knowledge, this is the first report to use the premixing method in the PCCAML system, which will benefit future lidar applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Gao and R. Hui, Opt. Lett. 37, 2022 (2012).
    [CrossRef]
  2. D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, Opt. Express 21, 1440 (2013).
    [CrossRef]
  3. J. Cheng, S. You, S. Rahman, and Y. H. Lo, Opt. Express 19, 15149 (2011).
    [CrossRef]
  4. J. Jung, M. Cho, D. K. Dey, and B. Javidi, Opt. Lett. 35, 1825 (2010).
    [CrossRef]
  5. N. J. Krichel, A. M. Carthy, and G. S. Buller, Opt. Express 18, 9192 (2010).
    [CrossRef]
  6. R. V. Chimenti, M. P. Dierking, P. E. Powers, J. W. Haus, and E. S. Bailey, Opt. Express 18, 15400 (2010).
    [CrossRef]
  7. B. Stann, B. C. Redman, W. Lawler, M. Giza, and J. Dammann, Proc. SPIE 6550, 655005 (2007).
    [CrossRef]
  8. B. Redman, W. Ruff, and M. Giza, Proc. SPIE 6214, 62140P (2006).
    [CrossRef]
  9. D. G. Fouche, Appl. Opt. 42, 5388 (2003).
    [CrossRef]
  10. Z. J. Zhang, L. Wu, Y. Zhang, Y. Zhao, and X. D. Sun, Appl. Opt. 50, 6522 (2011).
    [CrossRef]
  11. Z. H. Sun, J. H. Deng, and X. W. Yan, Proc. SPIE 7382, 73824C (2009).
    [CrossRef]
  12. F. Yang, Y. He, J. H. Shang, and W. B. Chen, Appl. Opt. 48, 6575 (2009).
    [CrossRef]

2013 (1)

2012 (1)

2011 (2)

2010 (3)

2009 (2)

Z. H. Sun, J. H. Deng, and X. W. Yan, Proc. SPIE 7382, 73824C (2009).
[CrossRef]

F. Yang, Y. He, J. H. Shang, and W. B. Chen, Appl. Opt. 48, 6575 (2009).
[CrossRef]

2007 (1)

B. Stann, B. C. Redman, W. Lawler, M. Giza, and J. Dammann, Proc. SPIE 6550, 655005 (2007).
[CrossRef]

2006 (1)

B. Redman, W. Ruff, and M. Giza, Proc. SPIE 6214, 62140P (2006).
[CrossRef]

2003 (1)

Bailey, E. S.

Buller, G. S.

Carthy, A. M.

Chen, W. B.

Cheng, J.

Chimenti, R. V.

Cho, M.

Dammann, J.

B. Stann, B. C. Redman, W. Lawler, M. Giza, and J. Dammann, Proc. SPIE 6550, 655005 (2007).
[CrossRef]

Dauler, E. A.

Deng, J. H.

Z. H. Sun, J. H. Deng, and X. W. Yan, Proc. SPIE 7382, 73824C (2009).
[CrossRef]

Dey, D. K.

Dierking, M. P.

Fouche, D. G.

Gao, S.

Giza, M.

B. Stann, B. C. Redman, W. Lawler, M. Giza, and J. Dammann, Proc. SPIE 6550, 655005 (2007).
[CrossRef]

B. Redman, W. Ruff, and M. Giza, Proc. SPIE 6214, 62140P (2006).
[CrossRef]

Haus, J. W.

He, Y.

Hui, R.

Javidi, B.

Jung, J.

Kerman, A. J.

Krichel, N. J.

Lawler, W.

B. Stann, B. C. Redman, W. Lawler, M. Giza, and J. Dammann, Proc. SPIE 6550, 655005 (2007).
[CrossRef]

Lo, Y. H.

Molnar, R. J.

Powers, P. E.

Rahman, S.

Redman, B.

B. Redman, W. Ruff, and M. Giza, Proc. SPIE 6214, 62140P (2006).
[CrossRef]

Redman, B. C.

B. Stann, B. C. Redman, W. Lawler, M. Giza, and J. Dammann, Proc. SPIE 6550, 655005 (2007).
[CrossRef]

Rosenberg, D.

Ruff, W.

B. Redman, W. Ruff, and M. Giza, Proc. SPIE 6214, 62140P (2006).
[CrossRef]

Shang, J. H.

Stann, B.

B. Stann, B. C. Redman, W. Lawler, M. Giza, and J. Dammann, Proc. SPIE 6550, 655005 (2007).
[CrossRef]

Sun, X. D.

Sun, Z. H.

Z. H. Sun, J. H. Deng, and X. W. Yan, Proc. SPIE 7382, 73824C (2009).
[CrossRef]

Wu, L.

Yan, X. W.

Z. H. Sun, J. H. Deng, and X. W. Yan, Proc. SPIE 7382, 73824C (2009).
[CrossRef]

Yang, F.

You, S.

Zhang, Y.

Zhang, Z. J.

Zhao, Y.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the smart PCCAML system using the premixing method. (b) Photo of laboratory system for the proof-of-principle experiment. (c) The sampling gate width of the Gm-APD is modulated by the reference signal. The (blue) dashed line is the reference signal, and the (red) square wave is the sampling gate of the Gm-APD. The sampling gate is equidistant; however, its width is proportional to the reference signal intensity. (LPF, low-pass filter; FFT, fast Fourier transform.)

Fig. 2.
Fig. 2.

Detection results (linear coordinate). (a) Smart PCCAML system using the premixing method. (b) PCCAML system using the postmixing method.

Fig. 3.
Fig. 3.

IF spectrum (linear coordinate) for the premixing system with (a) B=10MHz, (b) B=20MHz, and (c) B=30MHz.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S(t)=cos[f0t+kt2+φ].
TG(i)|t=i·tsample=Δt{cos[f0t+12kt2+φ]+1}/2.
E(i)|t=i·tsample=SR(tτ)·TG(i)|t=i·tsample=I0MΔt×14×{cos[f0τ+ktτ12kτ2]+cos[f0(2tτ)+kt2ktτ+12kτ2+2φ]}.
P(i)|t=i·tsample=1exp[Ns(i)].
P(i)|t=i·tsample=1{1Ns(i)+12Ns(i)21n[Ns(i)]n}Ns(i)=E(i)|t=i·tsampleη/hυ.
SIF(ω)=F[P(i)]F[E(i)]sinc(ωkτ).
R=τc2=fIFc2k.

Metrics