Abstract

We demonstrate greatly enhanced light absorption by monolayer graphene over a broad spectral range, from visible to near IR, based on the attenuated total reflection. In the experiment, graphene is sandwiched between two dielectric media referred to as superstrate and substrate. Based on numerical calculation and experimental results, the closer the refractive indices of the superstrate and the substrate are, the higher the absorption of graphene is. The light absorption of monolayer graphene up to 42.7% is experimentally achieved.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance

Xiaoyun Jiang, Tao Wang, Shuyuan Xiao, Xicheng Yan, and Le Cheng
Opt. Express 25(22) 27028-27036 (2017)

Dual-band light absorption enhancement of monolayer graphene from surface plasmon polaritons and magnetic dipole resonances in metamaterials

Bo Liu, Chaojun Tang, Jing Chen, Qiugu Wang, Mingxu Pei, and Huang Tang
Opt. Express 25(10) 12061-12068 (2017)

Resonance enhanced absorption in a graphene monolayer using deep metal gratings

B. Zhao, J. M. Zhao, and Z. M. Zhang
J. Opt. Soc. Am. B 32(6) 1176-1185 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription