Abstract

A photonic system capable of estimating the unknown frequency of a CW microwave tone is presented. The core of the system is a complementary optical filter monolithically integrated in InP, consisting of a ring-assisted Mach–Zehnder interferometer with a second-order elliptic response. By simultaneously measuring the different optical powers produced by a double-sideband suppressed-carrier modulation at the outputs of the photonic integrated circuit, an amplitude comparison function that depends on the input tone frequency is obtained. Using this technique, a frequency measurement range of 10 GHz (5–15 GHz) with a root mean square value of frequency error lower than 200 MHz is experimentally demonstrated. Moreover, simulations showing the impact of a residual optical carrier on system performance are also provided.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. L. Herselman and J. E. Cilliers, S. Afr. J. Sci. 102, 345 (2007).
  2. G.-C. Liang, C.-F. Shih, R. Withers, B. Cole, and M. Johansson, IEEE Trans. Microwave Theor. Tech. 44, 1289 (1996).
    [CrossRef]
  3. D. Marpaung, IEEE Photon. Technol. Lett. 25, 837 (2013).
    [CrossRef]
  4. H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, Opt. Express 16, 13707 (2008).
    [CrossRef]
  5. X. Zou, H. Chi, and J. Yao, IEEE Trans. Microwave Theor. Tech. 57, 505 (2009).
    [CrossRef]
  6. B. Lu, W. Pan, X. Zou, B. Luo, L. Yan, X. Liu, and S. Xiang, IEEE Photon. Technol. Lett. 25, 500 (2013).
    [CrossRef]
  7. H. Guo, G. Xiao, N. Mrad, and J. Yao, IEEE Photon. Technol. Lett. 21, 45 (2009).
    [CrossRef]
  8. X. Zou and J. Yao, IEEE Photon. Technol. Lett. 20, 1989 (2008).
    [CrossRef]
  9. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, Laser Photon. Rev. 7, 506 (2013).
    [CrossRef]
  10. J. S. Fandino, J. D. Domenech, P. Munoz, and J. Capmany, Opt. Express 21, 3726 (2013).
    [CrossRef]
  11. Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, IEEE Photon. Technol. Lett. 22, 941 (2010).
    [CrossRef]

2013 (4)

D. Marpaung, IEEE Photon. Technol. Lett. 25, 837 (2013).
[CrossRef]

B. Lu, W. Pan, X. Zou, B. Luo, L. Yan, X. Liu, and S. Xiang, IEEE Photon. Technol. Lett. 25, 500 (2013).
[CrossRef]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, Laser Photon. Rev. 7, 506 (2013).
[CrossRef]

J. S. Fandino, J. D. Domenech, P. Munoz, and J. Capmany, Opt. Express 21, 3726 (2013).
[CrossRef]

2010 (1)

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, IEEE Photon. Technol. Lett. 22, 941 (2010).
[CrossRef]

2009 (2)

H. Guo, G. Xiao, N. Mrad, and J. Yao, IEEE Photon. Technol. Lett. 21, 45 (2009).
[CrossRef]

X. Zou, H. Chi, and J. Yao, IEEE Trans. Microwave Theor. Tech. 57, 505 (2009).
[CrossRef]

2008 (2)

2007 (1)

P. L. Herselman and J. E. Cilliers, S. Afr. J. Sci. 102, 345 (2007).

1996 (1)

G.-C. Liang, C.-F. Shih, R. Withers, B. Cole, and M. Johansson, IEEE Trans. Microwave Theor. Tech. 44, 1289 (1996).
[CrossRef]

Bui, L. A.

Capmany, J.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, Laser Photon. Rev. 7, 506 (2013).
[CrossRef]

J. S. Fandino, J. D. Domenech, P. Munoz, and J. Capmany, Opt. Express 21, 3726 (2013).
[CrossRef]

Chi, H.

X. Zou, H. Chi, and J. Yao, IEEE Trans. Microwave Theor. Tech. 57, 505 (2009).
[CrossRef]

Cilliers, J. E.

P. L. Herselman and J. E. Cilliers, S. Afr. J. Sci. 102, 345 (2007).

Cole, B.

G.-C. Liang, C.-F. Shih, R. Withers, B. Cole, and M. Johansson, IEEE Trans. Microwave Theor. Tech. 44, 1289 (1996).
[CrossRef]

Domenech, J. D.

Emami, H.

Fandino, J. S.

Guo, H.

H. Guo, G. Xiao, N. Mrad, and J. Yao, IEEE Photon. Technol. Lett. 21, 45 (2009).
[CrossRef]

Heideman, R.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, Laser Photon. Rev. 7, 506 (2013).
[CrossRef]

Herselman, P. L.

P. L. Herselman and J. E. Cilliers, S. Afr. J. Sci. 102, 345 (2007).

Johansson, M.

G.-C. Liang, C.-F. Shih, R. Withers, B. Cole, and M. Johansson, IEEE Trans. Microwave Theor. Tech. 44, 1289 (1996).
[CrossRef]

Kawanishi, T.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, IEEE Photon. Technol. Lett. 22, 941 (2010).
[CrossRef]

Leinse, A.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, Laser Photon. Rev. 7, 506 (2013).
[CrossRef]

Liang, G.-C.

G.-C. Liang, C.-F. Shih, R. Withers, B. Cole, and M. Johansson, IEEE Trans. Microwave Theor. Tech. 44, 1289 (1996).
[CrossRef]

Liu, X.

B. Lu, W. Pan, X. Zou, B. Luo, L. Yan, X. Liu, and S. Xiang, IEEE Photon. Technol. Lett. 25, 500 (2013).
[CrossRef]

Lu, B.

B. Lu, W. Pan, X. Zou, B. Luo, L. Yan, X. Liu, and S. Xiang, IEEE Photon. Technol. Lett. 25, 500 (2013).
[CrossRef]

Luo, B.

B. Lu, W. Pan, X. Zou, B. Luo, L. Yan, X. Liu, and S. Xiang, IEEE Photon. Technol. Lett. 25, 500 (2013).
[CrossRef]

Marpaung, D.

D. Marpaung, IEEE Photon. Technol. Lett. 25, 837 (2013).
[CrossRef]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, Laser Photon. Rev. 7, 506 (2013).
[CrossRef]

Mitchell, A.

Mrad, N.

H. Guo, G. Xiao, N. Mrad, and J. Yao, IEEE Photon. Technol. Lett. 21, 45 (2009).
[CrossRef]

Munoz, P.

Nakajima, H.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, IEEE Photon. Technol. Lett. 22, 941 (2010).
[CrossRef]

Nakajima, S.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, IEEE Photon. Technol. Lett. 22, 941 (2010).
[CrossRef]

Ogiso, Y.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, IEEE Photon. Technol. Lett. 22, 941 (2010).
[CrossRef]

Pan, W.

B. Lu, W. Pan, X. Zou, B. Luo, L. Yan, X. Liu, and S. Xiang, IEEE Photon. Technol. Lett. 25, 500 (2013).
[CrossRef]

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, Laser Photon. Rev. 7, 506 (2013).
[CrossRef]

Sales, S.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, Laser Photon. Rev. 7, 506 (2013).
[CrossRef]

Sarkhosh, N.

Shih, C.-F.

G.-C. Liang, C.-F. Shih, R. Withers, B. Cole, and M. Johansson, IEEE Trans. Microwave Theor. Tech. 44, 1289 (1996).
[CrossRef]

Shinada, S.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, IEEE Photon. Technol. Lett. 22, 941 (2010).
[CrossRef]

Tsuchiya, Y.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, IEEE Photon. Technol. Lett. 22, 941 (2010).
[CrossRef]

Withers, R.

G.-C. Liang, C.-F. Shih, R. Withers, B. Cole, and M. Johansson, IEEE Trans. Microwave Theor. Tech. 44, 1289 (1996).
[CrossRef]

Xiang, S.

B. Lu, W. Pan, X. Zou, B. Luo, L. Yan, X. Liu, and S. Xiang, IEEE Photon. Technol. Lett. 25, 500 (2013).
[CrossRef]

Xiao, G.

H. Guo, G. Xiao, N. Mrad, and J. Yao, IEEE Photon. Technol. Lett. 21, 45 (2009).
[CrossRef]

Yan, L.

B. Lu, W. Pan, X. Zou, B. Luo, L. Yan, X. Liu, and S. Xiang, IEEE Photon. Technol. Lett. 25, 500 (2013).
[CrossRef]

Yao, J.

X. Zou, H. Chi, and J. Yao, IEEE Trans. Microwave Theor. Tech. 57, 505 (2009).
[CrossRef]

H. Guo, G. Xiao, N. Mrad, and J. Yao, IEEE Photon. Technol. Lett. 21, 45 (2009).
[CrossRef]

X. Zou and J. Yao, IEEE Photon. Technol. Lett. 20, 1989 (2008).
[CrossRef]

Zou, X.

B. Lu, W. Pan, X. Zou, B. Luo, L. Yan, X. Liu, and S. Xiang, IEEE Photon. Technol. Lett. 25, 500 (2013).
[CrossRef]

X. Zou, H. Chi, and J. Yao, IEEE Trans. Microwave Theor. Tech. 57, 505 (2009).
[CrossRef]

X. Zou and J. Yao, IEEE Photon. Technol. Lett. 20, 1989 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

D. Marpaung, IEEE Photon. Technol. Lett. 25, 837 (2013).
[CrossRef]

B. Lu, W. Pan, X. Zou, B. Luo, L. Yan, X. Liu, and S. Xiang, IEEE Photon. Technol. Lett. 25, 500 (2013).
[CrossRef]

H. Guo, G. Xiao, N. Mrad, and J. Yao, IEEE Photon. Technol. Lett. 21, 45 (2009).
[CrossRef]

X. Zou and J. Yao, IEEE Photon. Technol. Lett. 20, 1989 (2008).
[CrossRef]

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, IEEE Photon. Technol. Lett. 22, 941 (2010).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (2)

X. Zou, H. Chi, and J. Yao, IEEE Trans. Microwave Theor. Tech. 57, 505 (2009).
[CrossRef]

G.-C. Liang, C.-F. Shih, R. Withers, B. Cole, and M. Johansson, IEEE Trans. Microwave Theor. Tech. 44, 1289 (1996).
[CrossRef]

Laser Photon. Rev. (1)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, Laser Photon. Rev. 7, 506 (2013).
[CrossRef]

Opt. Express (2)

S. Afr. J. Sci. (1)

P. L. Herselman and J. E. Cilliers, S. Afr. J. Sci. 102, 345 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Operation principle of the IFM system. Here, H (solid line) represents the power transmission response (linear units) of the elliptic filter (bar), while G (dashed line) represents its corresponding complementary response (cross). (b) Simulated ACFs for both the elliptic filter (solid line) and a MZI (dashed line).

Fig. 2.
Fig. 2.

(a) Filter photomicrograph. (b) Normalized transfer functions measured for both bar (circles) and cross responses (triangles). Simulation results are also shown (dashed and dotted–dashed lines, respectively).

Fig. 3.
Fig. 3.

Measured SCR versus modulation frequency.

Fig. 4.
Fig. 4.

(a) Measured mean ACF (solid line) and simulated mean ACFs for different input RF powers. (b) RMS value of the frequency error as a function of modulation frequency.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ACF(fm)=Pcross(fm)Pbar(fm)=|G(f0+fm)|2+|G(f0fm)|2|H(f0+fm)|2+|H(f0fm)|2,

Metrics