Abstract

A method to realize a highly linear microwave photonics link is proposed based on the dual-drive dual-parallel Mach–Zehnder modulator (MZM). The scheme theoretically eliminates third-order intermodulation distortion (IMD3) completely by taking all the sidebands in the optical spectrum that cause IMD3 into consideration. Without digital linearization and other optical processors, the method utilizes simple electrical signal phase control. Microwave signals are symmetrically single sideband modulated in the two MZMs. IMD3 suppression of approximately 30 dB is experimentally demonstrated, and the spurious-free dynamic range is improved by 12dB·Hz2/3.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
    [CrossRef]
  2. J. P. Yao, J. Lightwave Technol. 27, 314 (2009).
    [CrossRef]
  3. M. Rius, J. Mora, M. Bolea, and J. Capmany, Opt. Express 20, 8871 (2012).
    [CrossRef]
  4. W. S. Chang, RF Photonic Technology in Optical Fiber Links (Cambridge University, 2002).
  5. H. F. Chou, A. Ramaswamy, D. Zibar, L. A. Johansson, J. E. Bowers, M. Rodwell, and L. A. Coldren, IEEE Photon. Technol. Lett. 19, 940 (2007).
  6. D. Lam, A. M. Fard, B. Buckley, and B. Jalali, Opt. Lett. 38, 446 (2013).
    [CrossRef]
  7. G. Zhang, X. Zheng, S. Li, H. Zhang, and B. Zhou, Opt. Lett. 37, 806 (2012).
    [CrossRef]
  8. C. H. Cox, Analog Optical Links (Cambridge University, 2004).
  9. A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, IEEE Photon. Technol. Lett. 23, 1718 (2011).
  10. S. Y. Li, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).
  11. C. Lim, A. Nirmalathas, K.-L. Lee, D. Novak, and R. Waterhouse, J. Lightwave Technol. 25, 1602 (2007).
    [CrossRef]
  12. L. M. Johnson and H. V. Roussell, Opt. Lett. 13, 928 (1988).
    [CrossRef]
  13. S. K. Korotky and R. M. de Ridder, IEEE J. Sel. Areas Commun. 8, 1377 (1990).
    [CrossRef]

2013 (1)

2012 (2)

2011 (1)

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, IEEE Photon. Technol. Lett. 23, 1718 (2011).

2010 (1)

S. Y. Li, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).

2009 (1)

2007 (3)

C. Lim, A. Nirmalathas, K.-L. Lee, D. Novak, and R. Waterhouse, J. Lightwave Technol. 25, 1602 (2007).
[CrossRef]

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

H. F. Chou, A. Ramaswamy, D. Zibar, L. A. Johansson, J. E. Bowers, M. Rodwell, and L. A. Coldren, IEEE Photon. Technol. Lett. 19, 940 (2007).

1990 (1)

S. K. Korotky and R. M. de Ridder, IEEE J. Sel. Areas Commun. 8, 1377 (1990).
[CrossRef]

1988 (1)

Bolea, M.

Bowers, J. E.

H. F. Chou, A. Ramaswamy, D. Zibar, L. A. Johansson, J. E. Bowers, M. Rodwell, and L. A. Coldren, IEEE Photon. Technol. Lett. 19, 940 (2007).

Buckley, B.

Capmany, J.

Chang, W. S.

W. S. Chang, RF Photonic Technology in Optical Fiber Links (Cambridge University, 2002).

Chou, H. F.

H. F. Chou, A. Ramaswamy, D. Zibar, L. A. Johansson, J. E. Bowers, M. Rodwell, and L. A. Coldren, IEEE Photon. Technol. Lett. 19, 940 (2007).

Coldren, L. A.

H. F. Chou, A. Ramaswamy, D. Zibar, L. A. Johansson, J. E. Bowers, M. Rodwell, and L. A. Coldren, IEEE Photon. Technol. Lett. 19, 940 (2007).

Cox, C. H.

C. H. Cox, Analog Optical Links (Cambridge University, 2004).

de Ridder, R. M.

S. K. Korotky and R. M. de Ridder, IEEE J. Sel. Areas Commun. 8, 1377 (1990).
[CrossRef]

Fard, A. M.

Ferreira, A.

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, IEEE Photon. Technol. Lett. 23, 1718 (2011).

Fonseca, D.

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, IEEE Photon. Technol. Lett. 23, 1718 (2011).

Jalali, B.

Johansson, L. A.

H. F. Chou, A. Ramaswamy, D. Zibar, L. A. Johansson, J. E. Bowers, M. Rodwell, and L. A. Coldren, IEEE Photon. Technol. Lett. 19, 940 (2007).

Johnson, L. M.

Korotky, S. K.

S. K. Korotky and R. M. de Ridder, IEEE J. Sel. Areas Commun. 8, 1377 (1990).
[CrossRef]

Lam, D.

Lee, K.-L.

Li, S.

Li, S. Y.

S. Y. Li, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).

Lim, C.

Monteiro, P.

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, IEEE Photon. Technol. Lett. 23, 1718 (2011).

Mora, J.

Nirmalathas, A.

Novak, D.

Ramaswamy, A.

H. F. Chou, A. Ramaswamy, D. Zibar, L. A. Johansson, J. E. Bowers, M. Rodwell, and L. A. Coldren, IEEE Photon. Technol. Lett. 19, 940 (2007).

Ribeiro, R.

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, IEEE Photon. Technol. Lett. 23, 1718 (2011).

Rius, M.

Rodwell, M.

H. F. Chou, A. Ramaswamy, D. Zibar, L. A. Johansson, J. E. Bowers, M. Rodwell, and L. A. Coldren, IEEE Photon. Technol. Lett. 19, 940 (2007).

Roussell, H. V.

Silveira, T.

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, IEEE Photon. Technol. Lett. 23, 1718 (2011).

Waterhouse, R.

Yao, J. P.

Zhang, G.

Zhang, H.

Zhang, H. Y.

S. Y. Li, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).

Zheng, X.

Zheng, X. P.

S. Y. Li, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).

Zhou, B.

Zhou, B. K.

S. Y. Li, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).

Zibar, D.

H. F. Chou, A. Ramaswamy, D. Zibar, L. A. Johansson, J. E. Bowers, M. Rodwell, and L. A. Coldren, IEEE Photon. Technol. Lett. 19, 940 (2007).

IEEE J. Sel. Areas Commun. (1)

S. K. Korotky and R. M. de Ridder, IEEE J. Sel. Areas Commun. 8, 1377 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

H. F. Chou, A. Ramaswamy, D. Zibar, L. A. Johansson, J. E. Bowers, M. Rodwell, and L. A. Coldren, IEEE Photon. Technol. Lett. 19, 940 (2007).

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, IEEE Photon. Technol. Lett. 23, 1718 (2011).

S. Y. Li, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).

J. Lightwave Technol. (2)

Nat. Photonics (1)

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Other (2)

C. H. Cox, Analog Optical Links (Cambridge University, 2004).

W. S. Chang, RF Photonic Technology in Optical Fiber Links (Cambridge University, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of MWP link using dual-drive DPMZM with electrical phase control. PD, photodiode. (a) Upper sideband modulated optical spectrum of MZM-1. (b) Lower sideband modulated optical spectrum of MZM-2.

Fig. 2.
Fig. 2.

Simulated electrical spectrum after PD when m=0.8. (a) Conventional quadrature biased MZM. (b) Proposed linearized DPMZM scheme.

Fig. 3.
Fig. 3.

Measured electrical spectrum after PD of (a) nonlinearized single MZM scheme and (b) proposed linearized scheme using dual-drive DPMZM.

Fig. 4.
Fig. 4.

Measured SFDR of the link based on nonlinearized single MZM (blue line) and linearized dual-drive DPMZM (red line). FOH, first-order harmonic.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

{V11(t)=Vm[cos(w1t+π2)+cos(w2t+π2)]+Vπ4,V12(t)=Vm[cos(w1t)+cos(w2t)]Vπ4,V21(t)=Vm[cos(w1tπ2)+cos(w2t+π2)]+Vπ4,V22(t)=Vm[cos(w1t)+cos(w2t+π)]Vπ4,
Eout1(t)=Ein(t)[exp(jπV11(t)Vπ)+exp(jπV12(t)Vπ)]=Ein(t)k=l=Jk(m)Jl(m)×ej(kw1t+lw2t)[(1)k+lejπ4+(j)k+lejπ4],
Eout2(t)=Ein(t)k=l=Jk(m)Jl(m)×(1)lej(kw1t+lw2t)[ejπ4+(j)k+lejπ4].
IPD(t)=12RPi×(8+8m(cos(w1t)+sin(w2t))+2m2(2+cos(2w1t)cos(2w2t))23m3(9cos(w1t)cos(3w1t)+9cos(2w2t)+sin(3w2t)))+O(m)4.

Metrics