Abstract

Surface plasmon microscopy is widely recognized for its high sensitivity to nanoscale dielectric or metallic structures confined in a close neighborhood of a gold surface. Recently, its coupling to high-numerical-aperture objective lenses pushed its resolution down to the diffraction limit. Here, we show that the same microscope configuration can be used to excite standing guided waves in asymmetric slabs, which definitely extends the range of applications of this type of microscopy from nano- to microscale structure imaging. We demonstrate experimentally on PPMA films that the V(Z) response of a scanning surface plasmon microscope can be Fourier inverted in order to obtain the reflectivity curve R(ν). When the guided waves are excited, R(ν) shows a finite number of sharp peaks corresponding to quantified guiding modes from which one can extract both the refractive index (RI) and the thickness of the layer at the point focused by the microscope. This device can thus be used to reconstruct RI and thickness contours of dielectric samples with a high spatial resolution.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. D. L. Hornauer and H. Raether, Opt. Commun. 7, 297 (1973).
    [CrossRef]
  3. V. Yashunsky, V. Lirtsman, M. Golosovsky, D. Davidov, and B. Aroeti, Biophys. J. 99, 4028 (2010).
    [CrossRef]
  4. H. Kano, S. Mizuguchi, and S. Kawata, J. Opt. Soc. Am. A 15, 1381 (1998).
    [CrossRef]
  5. M. G. Somekh, S. Liu, T. S. Velinov, and C. W. See, Appl. Opt. 39, 6279 (2000).
    [CrossRef]
  6. M. G. Somekh, S. G. Liu, T. S. Velinov, and C. W. See, Opt. Lett. 25, 823 (2000).
    [CrossRef]
  7. G. Stabler, M. G. Somekh, and C. W. See, J. Microsc. 214, 328 (2004).
    [CrossRef]
  8. L. Berguiga, S. Zhang, F. Argoul, and J. Elezgaray, Opt. Lett. 32, 509 (2007).
    [CrossRef]
  9. B. Huang, F. Yu, and R. N. Zare, Anal. Chem. 79, 2979 (2007).
    [CrossRef]
  10. K. Watanabe, N. Horiguchi, and H. Kano, Appl. Opt. 46, 4985 (2007).
    [CrossRef]
  11. L. Berguiga, T. Roland, K. Monier, J. Elezgaray, and F. Argoul, Opt. Express 19, 6571 (2011).
    [CrossRef]
  12. L. Berguiga, E. Boyer-Provera, J. Elezgaray, and F. Argoul, Plasmonics 8, 715 (2013).
    [CrossRef]
  13. E. Boyer-Provera, A. Rossi, L. Oriol, C. Dumontet, A. Plesa, L. Berguiga, J. Elezgaray, A. Arneodo, and F. Argoul, Opt. Express 21, 7456 (2013).
    [CrossRef]
  14. P. K. Tien, Rev. Mod. Phys. 49, 361 (1977).
    [CrossRef]
  15. W. Knoll, Annu. Rev. Phys. Chem. 49, 569 (1998).
    [CrossRef]
  16. K. Tiefenthaler and W. Lukosz, J. Opt. Soc. Am. B 6, 209 (1989).
    [CrossRef]
  17. F. Argoul, T. Roland, A. Fahys, L. Berguiga, and J. Elezgaray, C. R. Phys. 13, 800 (2012).
    [CrossRef]
  18. J. A. Hildebrand, K. Liang, and S. D. Bennett, J. Appl. Phys. 54, 7016 (1983).
    [CrossRef]
  19. C. B. Walsh and E. I. Franses, Thin Solid Films 347, 167 (1999).
    [CrossRef]

2013 (2)

2012 (1)

F. Argoul, T. Roland, A. Fahys, L. Berguiga, and J. Elezgaray, C. R. Phys. 13, 800 (2012).
[CrossRef]

2011 (1)

2010 (1)

V. Yashunsky, V. Lirtsman, M. Golosovsky, D. Davidov, and B. Aroeti, Biophys. J. 99, 4028 (2010).
[CrossRef]

2007 (3)

2004 (1)

G. Stabler, M. G. Somekh, and C. W. See, J. Microsc. 214, 328 (2004).
[CrossRef]

2000 (2)

1999 (1)

C. B. Walsh and E. I. Franses, Thin Solid Films 347, 167 (1999).
[CrossRef]

1998 (2)

W. Knoll, Annu. Rev. Phys. Chem. 49, 569 (1998).
[CrossRef]

H. Kano, S. Mizuguchi, and S. Kawata, J. Opt. Soc. Am. A 15, 1381 (1998).
[CrossRef]

1989 (1)

1983 (1)

J. A. Hildebrand, K. Liang, and S. D. Bennett, J. Appl. Phys. 54, 7016 (1983).
[CrossRef]

1977 (1)

P. K. Tien, Rev. Mod. Phys. 49, 361 (1977).
[CrossRef]

1973 (1)

D. L. Hornauer and H. Raether, Opt. Commun. 7, 297 (1973).
[CrossRef]

Argoul, F.

Arneodo, A.

Aroeti, B.

V. Yashunsky, V. Lirtsman, M. Golosovsky, D. Davidov, and B. Aroeti, Biophys. J. 99, 4028 (2010).
[CrossRef]

Bennett, S. D.

J. A. Hildebrand, K. Liang, and S. D. Bennett, J. Appl. Phys. 54, 7016 (1983).
[CrossRef]

Berguiga, L.

Boyer-Provera, E.

Davidov, D.

V. Yashunsky, V. Lirtsman, M. Golosovsky, D. Davidov, and B. Aroeti, Biophys. J. 99, 4028 (2010).
[CrossRef]

Dumontet, C.

Elezgaray, J.

Fahys, A.

F. Argoul, T. Roland, A. Fahys, L. Berguiga, and J. Elezgaray, C. R. Phys. 13, 800 (2012).
[CrossRef]

Franses, E. I.

C. B. Walsh and E. I. Franses, Thin Solid Films 347, 167 (1999).
[CrossRef]

Golosovsky, M.

V. Yashunsky, V. Lirtsman, M. Golosovsky, D. Davidov, and B. Aroeti, Biophys. J. 99, 4028 (2010).
[CrossRef]

Hildebrand, J. A.

J. A. Hildebrand, K. Liang, and S. D. Bennett, J. Appl. Phys. 54, 7016 (1983).
[CrossRef]

Horiguchi, N.

Hornauer, D. L.

D. L. Hornauer and H. Raether, Opt. Commun. 7, 297 (1973).
[CrossRef]

Huang, B.

B. Huang, F. Yu, and R. N. Zare, Anal. Chem. 79, 2979 (2007).
[CrossRef]

Kano, H.

K. Watanabe, N. Horiguchi, and H. Kano, Appl. Opt. 46, 4985 (2007).
[CrossRef]

H. Kano, S. Mizuguchi, and S. Kawata, J. Opt. Soc. Am. A 15, 1381 (1998).
[CrossRef]

Kawata, S.

H. Kano, S. Mizuguchi, and S. Kawata, J. Opt. Soc. Am. A 15, 1381 (1998).
[CrossRef]

Knoll, W.

W. Knoll, Annu. Rev. Phys. Chem. 49, 569 (1998).
[CrossRef]

Liang, K.

J. A. Hildebrand, K. Liang, and S. D. Bennett, J. Appl. Phys. 54, 7016 (1983).
[CrossRef]

Lirtsman, V.

V. Yashunsky, V. Lirtsman, M. Golosovsky, D. Davidov, and B. Aroeti, Biophys. J. 99, 4028 (2010).
[CrossRef]

Liu, S.

Liu, S. G.

Lukosz, W.

Mizuguchi, S.

H. Kano, S. Mizuguchi, and S. Kawata, J. Opt. Soc. Am. A 15, 1381 (1998).
[CrossRef]

Monier, K.

Oriol, L.

Plesa, A.

Raether, H.

D. L. Hornauer and H. Raether, Opt. Commun. 7, 297 (1973).
[CrossRef]

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Roland, T.

F. Argoul, T. Roland, A. Fahys, L. Berguiga, and J. Elezgaray, C. R. Phys. 13, 800 (2012).
[CrossRef]

L. Berguiga, T. Roland, K. Monier, J. Elezgaray, and F. Argoul, Opt. Express 19, 6571 (2011).
[CrossRef]

Rossi, A.

See, C. W.

Somekh, M. G.

Stabler, G.

G. Stabler, M. G. Somekh, and C. W. See, J. Microsc. 214, 328 (2004).
[CrossRef]

Tiefenthaler, K.

Tien, P. K.

P. K. Tien, Rev. Mod. Phys. 49, 361 (1977).
[CrossRef]

Velinov, T. S.

Walsh, C. B.

C. B. Walsh and E. I. Franses, Thin Solid Films 347, 167 (1999).
[CrossRef]

Watanabe, K.

Yashunsky, V.

V. Yashunsky, V. Lirtsman, M. Golosovsky, D. Davidov, and B. Aroeti, Biophys. J. 99, 4028 (2010).
[CrossRef]

Yu, F.

B. Huang, F. Yu, and R. N. Zare, Anal. Chem. 79, 2979 (2007).
[CrossRef]

Zare, R. N.

B. Huang, F. Yu, and R. N. Zare, Anal. Chem. 79, 2979 (2007).
[CrossRef]

Zhang, S.

Anal. Chem. (1)

B. Huang, F. Yu, and R. N. Zare, Anal. Chem. 79, 2979 (2007).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

W. Knoll, Annu. Rev. Phys. Chem. 49, 569 (1998).
[CrossRef]

Appl. Opt. (2)

Biophys. J. (1)

V. Yashunsky, V. Lirtsman, M. Golosovsky, D. Davidov, and B. Aroeti, Biophys. J. 99, 4028 (2010).
[CrossRef]

C. R. Phys. (1)

F. Argoul, T. Roland, A. Fahys, L. Berguiga, and J. Elezgaray, C. R. Phys. 13, 800 (2012).
[CrossRef]

J. Appl. Phys. (1)

J. A. Hildebrand, K. Liang, and S. D. Bennett, J. Appl. Phys. 54, 7016 (1983).
[CrossRef]

J. Microsc. (1)

G. Stabler, M. G. Somekh, and C. W. See, J. Microsc. 214, 328 (2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

H. Kano, S. Mizuguchi, and S. Kawata, J. Opt. Soc. Am. A 15, 1381 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

D. L. Hornauer and H. Raether, Opt. Commun. 7, 297 (1973).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Plasmonics (1)

L. Berguiga, E. Boyer-Provera, J. Elezgaray, and F. Argoul, Plasmonics 8, 715 (2013).
[CrossRef]

Rev. Mod. Phys. (1)

P. K. Tien, Rev. Mod. Phys. 49, 361 (1977).
[CrossRef]

Thin Solid Films (1)

C. B. Walsh and E. I. Franses, Thin Solid Films 347, 167 (1999).
[CrossRef]

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Modulus of Rp(Θ1) for a p polarized light. (b) Modulus of Rs(Θ1) for an s polarized light. (c) Waveguide phase ΦWG/π for a p polarized light. (d) Waveguide phase ΦWG/π for a s polarized light. The red curves correspond to a naked gold film (d2=35nm). The dashed green (resp. plain blue) curves correspond to a 35 nm gold film covered by a d3=1μm dielectric layer with RI n3=1.4 (resp. 1.5). The red circles in (c) and (d) mark the incident angles corresponding to guided wave modes. Parameters: n1=1.5151, ε2=11.8134+1.2144i, n2=ε21/2, n4=1, and λ=632.8nm.

Fig. 2.
Fig. 2.

(a) Modulus of Rp(ν)P2(ν) computed for p polarized light from a 1 μm dielectric layer with RI n3=1.4. (b) Modulus of Rs(ν)P2(ν) computed for s polarization from the same dielectric layer. (c) Modulus of V(Z) computed from Rp(ν) for p polarization. (d) Modulus of V(Z) computed from Rs(ν) for s polarization. The blue (resp. black) curves correspond to a constant (resp. Gaussian shaped) pupil function P(ν). In (c) and (d), the light black curves represent the real part of V(Z).

Fig. 3.
Fig. 3.

Inversion of V(Z) curves taken from PMMA sample (1). (a) Schematic description of the SSPM setup. (b) V(Z) curves (in black the modulus, in light gray the real part) in radial polarization. (c) Same as (a) in azimuthal polarization. (d) Modulus of P2(ν)Rp(ν) in radial polarization. (e) Same as (d) in azimuthal polarization.

Fig. 4.
Fig. 4.

(a) AFM imaging of a polymer scratch, obtained in contact mode. The height is color coded from dark blue to dark red in [0, 1250 nm]. (b) SSPM image of the polymer scratch for a defocus Z=0. Black bar: 10 μm. (c) Comparison of height profiles estimated from AFM (red) and from R(ν)P2(ν) curves (blue). (d) RI profile estimated from R(ν)P2(ν) curves. Error bars were estimated from the inversion algorithm of Eq. (2).

Tables (1)

Tables Icon

Table 1. Estimated Thickness and RI of PMMA Layers: Comparison of AFM and SSPMa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ΦWG=2*kmZd3+Φ32+Φ34=(2m+ζ)π,
V(Z)02πΘaΘbP2(Θ)R(Θ)ej4πn1ZcosΘ/λsinΘdΘdφ,

Metrics