Abstract

We investigated the anisotropic electro-optic (EO) effect on InGaAs quantum dot (QD) chain modulators. The linear EO coefficients were determined as 24.3pm/V (33.8pm/V) along the [011] direction and 30.6pm/V (40.3pm/V) along the [011¯] direction at 1.55 μm (1.32 μm) operational wavelength. The corresponding half-wave voltages (Vπs) were measured to be 5.35 V (4.35 V) and 4.65 V (3.86 V) at 1.55 μm (1.32 μm) wavelength. This is the first report on the anisotropic EO effect on QD chain structures. These modulators have 3 dB bandwidths larger than 10 GHz.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Liu, R. S. Kim, B. Liang, D. L. Huffaker, and H. R. Fetterman, IEEE Photon. Technol. Lett. 23, 1748 (2011).
    [CrossRef]
  2. Z. M. Wang, Yu. I. Mazur, G. J. Salamo, P. M. Lytvin, V. V. Strelchuk, and M. Ya. Valakh, Appl. Phys. Lett. 84, 4681 (2004).
    [CrossRef]
  3. L. Villegas-Lelovsky, M. D. Teodoro, V. Lopez-Richard, C. Calseverino, A. Malachias, E. Marega, B. L. Liang, Yu. I. Mazur, G. E. Marques, C. Trallero-Giner, and G. J. Salamo, Nanoscale Res. Lett. 6, 1 (2011).
  4. Z. M. Wang, H. Churchill, C. E. George, and G. J. Salamo, Appl. Phys. Lett. 96, 6908 (2004).
  5. X. Wang, Z. M. Wang, B. Liang, G. J. Salamo, and C. K. Shih, Nano Lett. 6, 1847 (2006).
    [CrossRef]

2011 (2)

W. Liu, R. S. Kim, B. Liang, D. L. Huffaker, and H. R. Fetterman, IEEE Photon. Technol. Lett. 23, 1748 (2011).
[CrossRef]

L. Villegas-Lelovsky, M. D. Teodoro, V. Lopez-Richard, C. Calseverino, A. Malachias, E. Marega, B. L. Liang, Yu. I. Mazur, G. E. Marques, C. Trallero-Giner, and G. J. Salamo, Nanoscale Res. Lett. 6, 1 (2011).

2006 (1)

X. Wang, Z. M. Wang, B. Liang, G. J. Salamo, and C. K. Shih, Nano Lett. 6, 1847 (2006).
[CrossRef]

2004 (2)

Z. M. Wang, H. Churchill, C. E. George, and G. J. Salamo, Appl. Phys. Lett. 96, 6908 (2004).

Z. M. Wang, Yu. I. Mazur, G. J. Salamo, P. M. Lytvin, V. V. Strelchuk, and M. Ya. Valakh, Appl. Phys. Lett. 84, 4681 (2004).
[CrossRef]

Calseverino, C.

L. Villegas-Lelovsky, M. D. Teodoro, V. Lopez-Richard, C. Calseverino, A. Malachias, E. Marega, B. L. Liang, Yu. I. Mazur, G. E. Marques, C. Trallero-Giner, and G. J. Salamo, Nanoscale Res. Lett. 6, 1 (2011).

Churchill, H.

Z. M. Wang, H. Churchill, C. E. George, and G. J. Salamo, Appl. Phys. Lett. 96, 6908 (2004).

Fetterman, H. R.

W. Liu, R. S. Kim, B. Liang, D. L. Huffaker, and H. R. Fetterman, IEEE Photon. Technol. Lett. 23, 1748 (2011).
[CrossRef]

George, C. E.

Z. M. Wang, H. Churchill, C. E. George, and G. J. Salamo, Appl. Phys. Lett. 96, 6908 (2004).

Huffaker, D. L.

W. Liu, R. S. Kim, B. Liang, D. L. Huffaker, and H. R. Fetterman, IEEE Photon. Technol. Lett. 23, 1748 (2011).
[CrossRef]

Kim, R. S.

W. Liu, R. S. Kim, B. Liang, D. L. Huffaker, and H. R. Fetterman, IEEE Photon. Technol. Lett. 23, 1748 (2011).
[CrossRef]

Liang, B.

W. Liu, R. S. Kim, B. Liang, D. L. Huffaker, and H. R. Fetterman, IEEE Photon. Technol. Lett. 23, 1748 (2011).
[CrossRef]

X. Wang, Z. M. Wang, B. Liang, G. J. Salamo, and C. K. Shih, Nano Lett. 6, 1847 (2006).
[CrossRef]

Liang, B. L.

L. Villegas-Lelovsky, M. D. Teodoro, V. Lopez-Richard, C. Calseverino, A. Malachias, E. Marega, B. L. Liang, Yu. I. Mazur, G. E. Marques, C. Trallero-Giner, and G. J. Salamo, Nanoscale Res. Lett. 6, 1 (2011).

Liu, W.

W. Liu, R. S. Kim, B. Liang, D. L. Huffaker, and H. R. Fetterman, IEEE Photon. Technol. Lett. 23, 1748 (2011).
[CrossRef]

Lopez-Richard, V.

L. Villegas-Lelovsky, M. D. Teodoro, V. Lopez-Richard, C. Calseverino, A. Malachias, E. Marega, B. L. Liang, Yu. I. Mazur, G. E. Marques, C. Trallero-Giner, and G. J. Salamo, Nanoscale Res. Lett. 6, 1 (2011).

Lytvin, P. M.

Z. M. Wang, Yu. I. Mazur, G. J. Salamo, P. M. Lytvin, V. V. Strelchuk, and M. Ya. Valakh, Appl. Phys. Lett. 84, 4681 (2004).
[CrossRef]

Malachias, A.

L. Villegas-Lelovsky, M. D. Teodoro, V. Lopez-Richard, C. Calseverino, A. Malachias, E. Marega, B. L. Liang, Yu. I. Mazur, G. E. Marques, C. Trallero-Giner, and G. J. Salamo, Nanoscale Res. Lett. 6, 1 (2011).

Marega, E.

L. Villegas-Lelovsky, M. D. Teodoro, V. Lopez-Richard, C. Calseverino, A. Malachias, E. Marega, B. L. Liang, Yu. I. Mazur, G. E. Marques, C. Trallero-Giner, and G. J. Salamo, Nanoscale Res. Lett. 6, 1 (2011).

Marques, G. E.

L. Villegas-Lelovsky, M. D. Teodoro, V. Lopez-Richard, C. Calseverino, A. Malachias, E. Marega, B. L. Liang, Yu. I. Mazur, G. E. Marques, C. Trallero-Giner, and G. J. Salamo, Nanoscale Res. Lett. 6, 1 (2011).

Mazur, Yu. I.

L. Villegas-Lelovsky, M. D. Teodoro, V. Lopez-Richard, C. Calseverino, A. Malachias, E. Marega, B. L. Liang, Yu. I. Mazur, G. E. Marques, C. Trallero-Giner, and G. J. Salamo, Nanoscale Res. Lett. 6, 1 (2011).

Z. M. Wang, Yu. I. Mazur, G. J. Salamo, P. M. Lytvin, V. V. Strelchuk, and M. Ya. Valakh, Appl. Phys. Lett. 84, 4681 (2004).
[CrossRef]

Salamo, G. J.

L. Villegas-Lelovsky, M. D. Teodoro, V. Lopez-Richard, C. Calseverino, A. Malachias, E. Marega, B. L. Liang, Yu. I. Mazur, G. E. Marques, C. Trallero-Giner, and G. J. Salamo, Nanoscale Res. Lett. 6, 1 (2011).

X. Wang, Z. M. Wang, B. Liang, G. J. Salamo, and C. K. Shih, Nano Lett. 6, 1847 (2006).
[CrossRef]

Z. M. Wang, H. Churchill, C. E. George, and G. J. Salamo, Appl. Phys. Lett. 96, 6908 (2004).

Z. M. Wang, Yu. I. Mazur, G. J. Salamo, P. M. Lytvin, V. V. Strelchuk, and M. Ya. Valakh, Appl. Phys. Lett. 84, 4681 (2004).
[CrossRef]

Shih, C. K.

X. Wang, Z. M. Wang, B. Liang, G. J. Salamo, and C. K. Shih, Nano Lett. 6, 1847 (2006).
[CrossRef]

Strelchuk, V. V.

Z. M. Wang, Yu. I. Mazur, G. J. Salamo, P. M. Lytvin, V. V. Strelchuk, and M. Ya. Valakh, Appl. Phys. Lett. 84, 4681 (2004).
[CrossRef]

Teodoro, M. D.

L. Villegas-Lelovsky, M. D. Teodoro, V. Lopez-Richard, C. Calseverino, A. Malachias, E. Marega, B. L. Liang, Yu. I. Mazur, G. E. Marques, C. Trallero-Giner, and G. J. Salamo, Nanoscale Res. Lett. 6, 1 (2011).

Trallero-Giner, C.

L. Villegas-Lelovsky, M. D. Teodoro, V. Lopez-Richard, C. Calseverino, A. Malachias, E. Marega, B. L. Liang, Yu. I. Mazur, G. E. Marques, C. Trallero-Giner, and G. J. Salamo, Nanoscale Res. Lett. 6, 1 (2011).

Valakh, M. Ya.

Z. M. Wang, Yu. I. Mazur, G. J. Salamo, P. M. Lytvin, V. V. Strelchuk, and M. Ya. Valakh, Appl. Phys. Lett. 84, 4681 (2004).
[CrossRef]

Villegas-Lelovsky, L.

L. Villegas-Lelovsky, M. D. Teodoro, V. Lopez-Richard, C. Calseverino, A. Malachias, E. Marega, B. L. Liang, Yu. I. Mazur, G. E. Marques, C. Trallero-Giner, and G. J. Salamo, Nanoscale Res. Lett. 6, 1 (2011).

Wang, X.

X. Wang, Z. M. Wang, B. Liang, G. J. Salamo, and C. K. Shih, Nano Lett. 6, 1847 (2006).
[CrossRef]

Wang, Z. M.

X. Wang, Z. M. Wang, B. Liang, G. J. Salamo, and C. K. Shih, Nano Lett. 6, 1847 (2006).
[CrossRef]

Z. M. Wang, H. Churchill, C. E. George, and G. J. Salamo, Appl. Phys. Lett. 96, 6908 (2004).

Z. M. Wang, Yu. I. Mazur, G. J. Salamo, P. M. Lytvin, V. V. Strelchuk, and M. Ya. Valakh, Appl. Phys. Lett. 84, 4681 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

Z. M. Wang, Yu. I. Mazur, G. J. Salamo, P. M. Lytvin, V. V. Strelchuk, and M. Ya. Valakh, Appl. Phys. Lett. 84, 4681 (2004).
[CrossRef]

Z. M. Wang, H. Churchill, C. E. George, and G. J. Salamo, Appl. Phys. Lett. 96, 6908 (2004).

IEEE Photon. Technol. Lett. (1)

W. Liu, R. S. Kim, B. Liang, D. L. Huffaker, and H. R. Fetterman, IEEE Photon. Technol. Lett. 23, 1748 (2011).
[CrossRef]

Nano Lett. (1)

X. Wang, Z. M. Wang, B. Liang, G. J. Salamo, and C. K. Shih, Nano Lett. 6, 1847 (2006).
[CrossRef]

Nanoscale Res. Lett. (1)

L. Villegas-Lelovsky, M. D. Teodoro, V. Lopez-Richard, C. Calseverino, A. Malachias, E. Marega, B. L. Liang, Yu. I. Mazur, G. E. Marques, C. Trallero-Giner, and G. J. Salamo, Nanoscale Res. Lett. 6, 1 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) AFM image of the QD chain wafer after 16 stacks of QD growth. (b) PL spectrum of the grown wafer with [011] and [011¯] polarizations.

Fig. 2.
Fig. 2.

Phase change as a function of bias at (a) 1.55 μm wavelength and (b) 1.32 μm wavelength. The blue and red dots are data from measurement results. The dash lines are linear fits of experimental results.

Fig. 3.
Fig. 3.

(a) Experiment setup and (b) experimental and simulation results for frequency roll-off.

Fig. 4.
Fig. 4.

Waveguide loss measurement data for different waveguide lengths.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Φ=πLn03λ(ΓGaAsrGaAs+ΓQDrQD)E,

Metrics