Abstract

We demonstrate a paradigm in absolute laser radiometry where a laser beam’s power can be measured from its radiation pressure. Using an off-the-shelf high-accuracy mass scale, a 530 W Yb-doped fiber laser, and a 92 kW CO2 laser, we present preliminary results of absolute optical power measurements with inaccuracies of better than 7% to 13%. We find negligible contribution from radiometric (thermal) forces. We also identify this scale’s dynamic-force noise floor for a 0.1 Hz modulation frequency as 4μN/Hz1/2 or, as optical power sensitivity, 600W/Hz1/2.

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription