Abstract

We report the fabrication and the characterization of buried waveguide in As2S3 glass. It is well known that the interaction of femtosecond pulses with this material at high laser repetition rates results in a mainly negative refractive index variation, due to heat accumulation effect. However, we show here that a helical translation of the sample parallel to the laser beam, allows the inscription of a core of positive refractive variation, with full control over its magnitude and diameter. An example demonstrating the high symmetry of the guided mode is given.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Osellame, G. Cerullo, and R. Ramponi, in Topics in Applied Physics (Springer, 2012).
  2. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A 77, 109 (2003).
    [CrossRef]
  3. R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, Opt. Express 19, 5698 (2011).
    [CrossRef]
  4. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, A. Fuerbach, M. J. Withford, and T. M. Monro, Opt. Lett. 37, 996 (2012).
    [CrossRef]
  5. C. Fan, B. Poumellec, M. Lancry, X. He, H. Zeng, A. Erraji-Chahid, Q. Liu, and G. Chen, Opt. Lett. 37, 2955 (2012).
    [CrossRef]
  6. J. Choi, M. Bellec, A. Royon, K. Bourhis, G. Papon, T. Cardinal, L. Canioni, and M. Richardson, Opt. Lett. 37, 1029 (2012).
    [CrossRef]
  7. L. Labadie, C. Vigreux-Bercovici, A. Pradel, P. Kern, B. Arezki, and J.-E. Broquin, Opt. Express 14, 8459 (2006).
    [CrossRef]
  8. C. Conseil, J.-C. Bastien, C. Boussard-Plédel, X.-H. Zhang, P. Lucas, S. Dai, J. Lucas, and B. Bureau, Opt. Mater. Express 2, 1470 (2012).
    [CrossRef]
  9. P. Lucas, D. Le Coq, C. Juncker, J. Collier, D. E. Boesewetter, C. Boussard-Pledel, B. Bureau, and M. R. Riley, Appl. Spectrosc. 59, 1 (2005).
    [CrossRef]
  10. B. J. Eggleton, B. Luther-Davies, and K. Richardson, Nat. Photonics 5, 141 (2011).
  11. P. Masselin, D. L. Coq, and E. Bychkov, Opt. Mater. 33, 872 (2011).
    [CrossRef]
  12. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, Opt. Express 13, 4708 (2005).
    [CrossRef]
  13. M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, Opt. Express 20, 934 (2012).
    [CrossRef]
  14. E. Ampem-Lassen, F. Sidiroglou, J. L. Peng, S. T. Huntington, and A. Roberts, Opt. Express 16, 10912 (2008).
    [CrossRef]
  15. N. Huot, R. Stoian, A. Mermillod-Blondin, C. Mauclair, and E. Audouard, Opt. Express 15, 12395 (2007).
    [CrossRef]
  16. B. Cumming, S. Debbarma, B. Luther-Davies, and M. Gu, Appl. Phys. B 109, 227 (2012).
    [CrossRef]
  17. A. Jesacher and M. J. Booth, Opt. Express 18, 21090 (2010).
    [CrossRef]
  18. M. Sheik-Bahae, A. Said, T.-H. Wei, D. Hagan, and E. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
    [CrossRef]
  19. E. Ampem-Lassen, S. T. Huntington, N. M. Dragomir, K. A. Nugent, and A. Roberts, Opt. Express 13, 3277 (2005).
    [CrossRef]

2012 (6)

2011 (3)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, Nat. Photonics 5, 141 (2011).

P. Masselin, D. L. Coq, and E. Bychkov, Opt. Mater. 33, 872 (2011).
[CrossRef]

R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, Opt. Express 19, 5698 (2011).
[CrossRef]

2010 (1)

2008 (1)

2007 (1)

2006 (1)

2005 (3)

2003 (1)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A 77, 109 (2003).
[CrossRef]

1990 (1)

M. Sheik-Bahae, A. Said, T.-H. Wei, D. Hagan, and E. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Ampem-Lassen, E.

Arai, A.

Arezki, B.

Audouard, E.

Bastien, J.-C.

Bellec, M.

Birks, T. A.

Bland-Hawthorn, J.

Boesewetter, D. E.

Booth, M. J.

Bourhis, K.

Boussard-Pledel, C.

Boussard-Plédel, C.

Bovatsek, J.

Broquin, J.-E.

Bureau, B.

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A 77, 109 (2003).
[CrossRef]

Bychkov, E.

P. Masselin, D. L. Coq, and E. Bychkov, Opt. Mater. 33, 872 (2011).
[CrossRef]

Canioni, L.

Cardinal, T.

Cerullo, G.

R. Osellame, G. Cerullo, and R. Ramponi, in Topics in Applied Physics (Springer, 2012).

Chen, G.

Choi, J.

Collier, J.

Conseil, C.

Coq, D. L.

P. Masselin, D. L. Coq, and E. Bychkov, Opt. Mater. 33, 872 (2011).
[CrossRef]

Cumming, B.

B. Cumming, S. Debbarma, B. Luther-Davies, and M. Gu, Appl. Phys. B 109, 227 (2012).
[CrossRef]

Dai, S.

Debbarma, S.

B. Cumming, S. Debbarma, B. Luther-Davies, and M. Gu, Appl. Phys. B 109, 227 (2012).
[CrossRef]

Dragomir, N. M.

Eaton, S.

Ebendorff-Heidepriem, H.

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, Nat. Photonics 5, 141 (2011).

Erraji-Chahid, A.

Fan, C.

Fuerbach, A.

Gross, S.

Gu, M.

B. Cumming, S. Debbarma, B. Luther-Davies, and M. Gu, Appl. Phys. B 109, 227 (2012).
[CrossRef]

Hagan, D.

M. Sheik-Bahae, A. Said, T.-H. Wei, D. Hagan, and E. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

He, X.

Herman, P.

Hirao, K.

Huntington, S. T.

Huot, N.

Jesacher, A.

Juncker, C.

Kar, A. K.

Kern, P.

Labadie, L.

Lancaster, D. G.

Lancry, M.

Le Coq, D.

Leon-Saval, S. G.

Liu, Q.

Lucas, J.

Lucas, P.

Luther-Davies, B.

B. Cumming, S. Debbarma, B. Luther-Davies, and M. Gu, Appl. Phys. B 109, 227 (2012).
[CrossRef]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, Nat. Photonics 5, 141 (2011).

Masselin, P.

P. Masselin, D. L. Coq, and E. Bychkov, Opt. Mater. 33, 872 (2011).
[CrossRef]

Mauclair, C.

Mermillod-Blondin, A.

Miura, K.

Monro, T. M.

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A 77, 109 (2003).
[CrossRef]

Nugent, K. A.

Ohnishi, M.

Osellame, R.

R. Osellame, G. Cerullo, and R. Ramponi, in Topics in Applied Physics (Springer, 2012).

Papon, G.

Peng, J. L.

Poumellec, B.

Pradel, A.

Ramponi, R.

R. Osellame, G. Cerullo, and R. Ramponi, in Topics in Applied Physics (Springer, 2012).

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, Nat. Photonics 5, 141 (2011).

Richardson, M.

Riley, M. R.

Roberts, A.

Royon, A.

Said, A.

M. Sheik-Bahae, A. Said, T.-H. Wei, D. Hagan, and E. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Sakakura, M.

Shah, L.

Sheik-Bahae, M.

M. Sheik-Bahae, A. Said, T.-H. Wei, D. Hagan, and E. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Shimizu, M.

Shimotsuma, Y.

Sidiroglou, F.

Stoian, R.

Thomson, R. R.

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A 77, 109 (2003).
[CrossRef]

Van Stryland, E.

M. Sheik-Bahae, A. Said, T.-H. Wei, D. Hagan, and E. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Vigreux-Bercovici, C.

Wei, T.-H.

M. Sheik-Bahae, A. Said, T.-H. Wei, D. Hagan, and E. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A 77, 109 (2003).
[CrossRef]

Withford, M. J.

Yamaji, M.

Yoshino, F.

Zeng, H.

Zhang, H.

Zhang, X.-H.

Appl. Phys. A (1)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A 77, 109 (2003).
[CrossRef]

Appl. Phys. B (1)

B. Cumming, S. Debbarma, B. Luther-Davies, and M. Gu, Appl. Phys. B 109, 227 (2012).
[CrossRef]

Appl. Spectrosc. (1)

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. Said, T.-H. Wei, D. Hagan, and E. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Nat. Photonics (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, Nat. Photonics 5, 141 (2011).

Opt. Express (8)

Opt. Lett. (3)

Opt. Mater. (1)

P. Masselin, D. L. Coq, and E. Bychkov, Opt. Mater. 33, 872 (2011).
[CrossRef]

Opt. Mater. Express (1)

Other (1)

R. Osellame, G. Cerullo, and R. Ramponi, in Topics in Applied Physics (Springer, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Δn profile of the photowritten structure reconstructed by the quantitative phase imaging technique.

Fig. 2.
Fig. 2.

Open aperture Z-Scan experiment without (black curve) and with compensation (red curve) of the dependence. The curves represent the fraction of light absorbed by the sample.

Fig. 3.
Fig. 3.

Example of Δn profile obtained for different pulse energies (a) and radius (b). An illustration of waveguide homogeneity is given in (c). (a) Refractive index profiles obtained for a radius of the helix of 8μm and a pulse energy of 0.92 and 1.05 nJ for the black and the red curve, respectively, (b) refractive index profiles obtained for a radius of the helix of 11μm and the pulse energies used in (a), and (c) 2D refractive index profile obtained in the same conditions as for the red curve in (a).

Fig. 4.
Fig. 4.

Δn profile of the photowritten structure reconstructed by quantitative phase-imaging technique.

Metrics