Abstract

Improved out-coupling efficiency and low haze of organic light-emitting diode (OLED) lighting with an auxiliary electrode are demonstrated by selective microlens arrays (SMLAs). The microlens arrays, aligned with the auxiliary electrode, were selectively fabricated, since the fully packed microlens arrays lead to OLED lighting with high haze. The external quantum efficiency and power efficiency of the devices with the SMLAs increased by 32% when compared with the devices without these arrays. Using the SMLAs, dark grid lines in the emission region became brighter, with a low haze, and the spectra of the emitted light had no shift.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, Nature 440, 908 (2006).
    [CrossRef]
  2. C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys. 90, 5048 (2001).
    [CrossRef]
  3. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature 459, 234 (2009).
    [CrossRef]
  4. B. C. Krummacher, S. Nowy, J. Frischeisen, M. Klein, and W. Brütting, Org. Electron. 10, 478 (2009).
    [CrossRef]
  5. W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, Adv. Funct. Mater. 22, 3454 (2012).
    [CrossRef]
  6. M. Slootsky and S. R. Forrest, Opt. Lett. 35, 1052 (2010).
    [CrossRef]
  7. S. H. Eom, E. Wrzesniewski, and J. Xue, Org. Electron. 12, 472 (2011).
    [CrossRef]
  8. H. Y. Lin, Y. H. Ho, J. H. Lee, K. Y. Chen, J. H. Fang, S. C. Hsu, M. K. Wei, H. Y. Lin, J. H. Tsai, and T. C. Wu, Opt. Express 16, 11044 (2008).
    [CrossRef]
  9. S. W. Liu, J. X. Wang, Y. Divayana, K. Dev, and S. T. Tan, Appl. Phys. Lett. 102, 053305 (2013).
    [CrossRef]
  10. H. Y. Lin, J. H. Lee, M. K. Wei, K. Y. Chen, S. C. Hsu, Y. H. Ho, and C. Y. Lin, Proc. SPIE 6655, 66551H (2007).
    [CrossRef]
  11. K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, and W. Lövenich, J. Appl. Phys. 100, 114513 (2006).
    [CrossRef]
  12. J. W. Park, J. H. Lee, D. C. Shin, and S. H. Park, J. Disp. Technol. 5, 306 (2009).
    [CrossRef]
  13. J. W. Park, D. C. Shin, and S. H. Park, Semicond. Sci. Technol. 26, 034002 (2011).
    [CrossRef]
  14. X. Li, X. Wang, J. Jin, X. Li, Y. Tian, and S. Fu, Proc. SPIE 7657, 765070Z (2010).

2013 (1)

S. W. Liu, J. X. Wang, Y. Divayana, K. Dev, and S. T. Tan, Appl. Phys. Lett. 102, 053305 (2013).
[CrossRef]

2012 (1)

W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, Adv. Funct. Mater. 22, 3454 (2012).
[CrossRef]

2011 (2)

S. H. Eom, E. Wrzesniewski, and J. Xue, Org. Electron. 12, 472 (2011).
[CrossRef]

J. W. Park, D. C. Shin, and S. H. Park, Semicond. Sci. Technol. 26, 034002 (2011).
[CrossRef]

2010 (2)

X. Li, X. Wang, J. Jin, X. Li, Y. Tian, and S. Fu, Proc. SPIE 7657, 765070Z (2010).

M. Slootsky and S. R. Forrest, Opt. Lett. 35, 1052 (2010).
[CrossRef]

2009 (3)

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature 459, 234 (2009).
[CrossRef]

B. C. Krummacher, S. Nowy, J. Frischeisen, M. Klein, and W. Brütting, Org. Electron. 10, 478 (2009).
[CrossRef]

J. W. Park, J. H. Lee, D. C. Shin, and S. H. Park, J. Disp. Technol. 5, 306 (2009).
[CrossRef]

2008 (1)

2007 (1)

H. Y. Lin, J. H. Lee, M. K. Wei, K. Y. Chen, S. C. Hsu, Y. H. Ho, and C. Y. Lin, Proc. SPIE 6655, 66551H (2007).
[CrossRef]

2006 (2)

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, and W. Lövenich, J. Appl. Phys. 100, 114513 (2006).
[CrossRef]

Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, Nature 440, 908 (2006).
[CrossRef]

2001 (1)

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys. 90, 5048 (2001).
[CrossRef]

Adachi, C.

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys. 90, 5048 (2001).
[CrossRef]

Baldo, M. A.

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys. 90, 5048 (2001).
[CrossRef]

Brütting, W.

B. C. Krummacher, S. Nowy, J. Frischeisen, M. Klein, and W. Brütting, Org. Electron. 10, 478 (2009).
[CrossRef]

Chen, K. Y.

H. Y. Lin, Y. H. Ho, J. H. Lee, K. Y. Chen, J. H. Fang, S. C. Hsu, M. K. Wei, H. Y. Lin, J. H. Tsai, and T. C. Wu, Opt. Express 16, 11044 (2008).
[CrossRef]

H. Y. Lin, J. H. Lee, M. K. Wei, K. Y. Chen, S. C. Hsu, Y. H. Ho, and C. Y. Lin, Proc. SPIE 6655, 66551H (2007).
[CrossRef]

Dev, K.

S. W. Liu, J. X. Wang, Y. Divayana, K. Dev, and S. T. Tan, Appl. Phys. Lett. 102, 053305 (2013).
[CrossRef]

Divayana, Y.

S. W. Liu, J. X. Wang, Y. Divayana, K. Dev, and S. T. Tan, Appl. Phys. Lett. 102, 053305 (2013).
[CrossRef]

Elschner, A.

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, and W. Lövenich, J. Appl. Phys. 100, 114513 (2006).
[CrossRef]

Eom, S. H.

S. H. Eom, E. Wrzesniewski, and J. Xue, Org. Electron. 12, 472 (2011).
[CrossRef]

Fang, J. H.

Forrest, S. R.

M. Slootsky and S. R. Forrest, Opt. Lett. 35, 1052 (2010).
[CrossRef]

Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, Nature 440, 908 (2006).
[CrossRef]

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys. 90, 5048 (2001).
[CrossRef]

Frischeisen, J.

B. C. Krummacher, S. Nowy, J. Frischeisen, M. Klein, and W. Brütting, Org. Electron. 10, 478 (2009).
[CrossRef]

Fu, S.

X. Li, X. Wang, J. Jin, X. Li, Y. Tian, and S. Fu, Proc. SPIE 7657, 765070Z (2010).

Giebink, N. C.

Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, Nature 440, 908 (2006).
[CrossRef]

Ho, Y. H.

H. Y. Lin, Y. H. Ho, J. H. Lee, K. Y. Chen, J. H. Fang, S. C. Hsu, M. K. Wei, H. Y. Lin, J. H. Tsai, and T. C. Wu, Opt. Express 16, 11044 (2008).
[CrossRef]

H. Y. Lin, J. H. Lee, M. K. Wei, K. Y. Chen, S. C. Hsu, Y. H. Ho, and C. Y. Lin, Proc. SPIE 6655, 66551H (2007).
[CrossRef]

Hsu, S. C.

H. Y. Lin, Y. H. Ho, J. H. Lee, K. Y. Chen, J. H. Fang, S. C. Hsu, M. K. Wei, H. Y. Lin, J. H. Tsai, and T. C. Wu, Opt. Express 16, 11044 (2008).
[CrossRef]

H. Y. Lin, J. H. Lee, M. K. Wei, K. Y. Chen, S. C. Hsu, Y. H. Ho, and C. Y. Lin, Proc. SPIE 6655, 66551H (2007).
[CrossRef]

Jin, J.

X. Li, X. Wang, J. Jin, X. Li, Y. Tian, and S. Fu, Proc. SPIE 7657, 765070Z (2010).

Kanno, H.

Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, Nature 440, 908 (2006).
[CrossRef]

Klein, M.

B. C. Krummacher, S. Nowy, J. Frischeisen, M. Klein, and W. Brütting, Org. Electron. 10, 478 (2009).
[CrossRef]

Koo, W. H.

W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, Adv. Funct. Mater. 22, 3454 (2012).
[CrossRef]

Krummacher, B. C.

B. C. Krummacher, S. Nowy, J. Frischeisen, M. Klein, and W. Brütting, Org. Electron. 10, 478 (2009).
[CrossRef]

Lee, J. H.

J. W. Park, J. H. Lee, D. C. Shin, and S. H. Park, J. Disp. Technol. 5, 306 (2009).
[CrossRef]

H. Y. Lin, Y. H. Ho, J. H. Lee, K. Y. Chen, J. H. Fang, S. C. Hsu, M. K. Wei, H. Y. Lin, J. H. Tsai, and T. C. Wu, Opt. Express 16, 11044 (2008).
[CrossRef]

H. Y. Lin, J. H. Lee, M. K. Wei, K. Y. Chen, S. C. Hsu, Y. H. Ho, and C. Y. Lin, Proc. SPIE 6655, 66551H (2007).
[CrossRef]

Leo, K.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature 459, 234 (2009).
[CrossRef]

Li, X.

X. Li, X. Wang, J. Jin, X. Li, Y. Tian, and S. Fu, Proc. SPIE 7657, 765070Z (2010).

X. Li, X. Wang, J. Jin, X. Li, Y. Tian, and S. Fu, Proc. SPIE 7657, 765070Z (2010).

Li, X. H.

W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, Adv. Funct. Mater. 22, 3454 (2012).
[CrossRef]

Lin, C. Y.

H. Y. Lin, J. H. Lee, M. K. Wei, K. Y. Chen, S. C. Hsu, Y. H. Ho, and C. Y. Lin, Proc. SPIE 6655, 66551H (2007).
[CrossRef]

Lin, H. Y.

Lindner, F.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature 459, 234 (2009).
[CrossRef]

Liu, S. W.

S. W. Liu, J. X. Wang, Y. Divayana, K. Dev, and S. T. Tan, Appl. Phys. Lett. 102, 053305 (2013).
[CrossRef]

Lövenich, W.

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, and W. Lövenich, J. Appl. Phys. 100, 114513 (2006).
[CrossRef]

Lüssem, B.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature 459, 234 (2009).
[CrossRef]

Ma, B.

Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, Nature 440, 908 (2006).
[CrossRef]

Marescaux, M.

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, and W. Lövenich, J. Appl. Phys. 100, 114513 (2006).
[CrossRef]

Neyts, K.

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, and W. Lövenich, J. Appl. Phys. 100, 114513 (2006).
[CrossRef]

Nieto, A. U.

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, and W. Lövenich, J. Appl. Phys. 100, 114513 (2006).
[CrossRef]

Nowy, S.

B. C. Krummacher, S. Nowy, J. Frischeisen, M. Klein, and W. Brütting, Org. Electron. 10, 478 (2009).
[CrossRef]

Park, J. W.

J. W. Park, D. C. Shin, and S. H. Park, Semicond. Sci. Technol. 26, 034002 (2011).
[CrossRef]

J. W. Park, J. H. Lee, D. C. Shin, and S. H. Park, J. Disp. Technol. 5, 306 (2009).
[CrossRef]

Park, S. H.

J. W. Park, D. C. Shin, and S. H. Park, Semicond. Sci. Technol. 26, 034002 (2011).
[CrossRef]

J. W. Park, J. H. Lee, D. C. Shin, and S. H. Park, J. Disp. Technol. 5, 306 (2009).
[CrossRef]

Reineke, S.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature 459, 234 (2009).
[CrossRef]

Schwartz, G.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature 459, 234 (2009).
[CrossRef]

Seidler, N.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature 459, 234 (2009).
[CrossRef]

Shin, D. C.

J. W. Park, D. C. Shin, and S. H. Park, Semicond. Sci. Technol. 26, 034002 (2011).
[CrossRef]

J. W. Park, J. H. Lee, D. C. Shin, and S. H. Park, J. Disp. Technol. 5, 306 (2009).
[CrossRef]

Slootsky, M.

So, F.

W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, Adv. Funct. Mater. 22, 3454 (2012).
[CrossRef]

Sun, Y.

Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, Nature 440, 908 (2006).
[CrossRef]

Tan, S. T.

S. W. Liu, J. X. Wang, Y. Divayana, K. Dev, and S. T. Tan, Appl. Phys. Lett. 102, 053305 (2013).
[CrossRef]

Tansu, N.

W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, Adv. Funct. Mater. 22, 3454 (2012).
[CrossRef]

Thompson, M. E.

Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, Nature 440, 908 (2006).
[CrossRef]

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys. 90, 5048 (2001).
[CrossRef]

Tian, Y.

X. Li, X. Wang, J. Jin, X. Li, Y. Tian, and S. Fu, Proc. SPIE 7657, 765070Z (2010).

Tsai, J. H.

Walzer, K.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature 459, 234 (2009).
[CrossRef]

Wang, J. X.

S. W. Liu, J. X. Wang, Y. Divayana, K. Dev, and S. T. Tan, Appl. Phys. Lett. 102, 053305 (2013).
[CrossRef]

Wang, X.

X. Li, X. Wang, J. Jin, X. Li, Y. Tian, and S. Fu, Proc. SPIE 7657, 765070Z (2010).

Wei, M. K.

H. Y. Lin, Y. H. Ho, J. H. Lee, K. Y. Chen, J. H. Fang, S. C. Hsu, M. K. Wei, H. Y. Lin, J. H. Tsai, and T. C. Wu, Opt. Express 16, 11044 (2008).
[CrossRef]

H. Y. Lin, J. H. Lee, M. K. Wei, K. Y. Chen, S. C. Hsu, Y. H. Ho, and C. Y. Lin, Proc. SPIE 6655, 66551H (2007).
[CrossRef]

Wrzesniewski, E.

S. H. Eom, E. Wrzesniewski, and J. Xue, Org. Electron. 12, 472 (2011).
[CrossRef]

Wu, T. C.

Xue, J.

S. H. Eom, E. Wrzesniewski, and J. Xue, Org. Electron. 12, 472 (2011).
[CrossRef]

Youn, W.

W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, Adv. Funct. Mater. 22, 3454 (2012).
[CrossRef]

Zhu, P.

W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, Adv. Funct. Mater. 22, 3454 (2012).
[CrossRef]

Adv. Funct. Mater. (1)

W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, Adv. Funct. Mater. 22, 3454 (2012).
[CrossRef]

Appl. Phys. Lett. (1)

S. W. Liu, J. X. Wang, Y. Divayana, K. Dev, and S. T. Tan, Appl. Phys. Lett. 102, 053305 (2013).
[CrossRef]

J. Appl. Phys. (2)

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys. 90, 5048 (2001).
[CrossRef]

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, and W. Lövenich, J. Appl. Phys. 100, 114513 (2006).
[CrossRef]

J. Disp. Technol. (1)

J. W. Park, J. H. Lee, D. C. Shin, and S. H. Park, J. Disp. Technol. 5, 306 (2009).
[CrossRef]

Nature (2)

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature 459, 234 (2009).
[CrossRef]

Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, Nature 440, 908 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Org. Electron. (2)

S. H. Eom, E. Wrzesniewski, and J. Xue, Org. Electron. 12, 472 (2011).
[CrossRef]

B. C. Krummacher, S. Nowy, J. Frischeisen, M. Klein, and W. Brütting, Org. Electron. 10, 478 (2009).
[CrossRef]

Proc. SPIE (2)

H. Y. Lin, J. H. Lee, M. K. Wei, K. Y. Chen, S. C. Hsu, Y. H. Ho, and C. Y. Lin, Proc. SPIE 6655, 66551H (2007).
[CrossRef]

X. Li, X. Wang, J. Jin, X. Li, Y. Tian, and S. Fu, Proc. SPIE 7657, 765070Z (2010).

Semicond. Sci. Technol. (1)

J. W. Park, D. C. Shin, and S. H. Park, Semicond. Sci. Technol. 26, 034002 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic illustration of fabrication procedures for the SMLAs and auxiliary electrode.

Fig. 2.
Fig. 2.

(a) Photograph and (b) optical microscope image of the auxiliary electrode and insulator after the lift-off process. (c) and (d) Scanning electron microscope images of the SMLAs.

Fig. 3.
Fig. 3.

(a) Current density–voltage characteristics. (b) Current efficiency and power efficiency as a function of luminance (solid and open symbols represent the current efficiency and power efficiency, respectively). (c) External quantum efficiency–current density characteristics of the OLEDs that have the auxiliary electrode without SMLAs (square), with 78 μm width SMLAs (circle), and with 312 μm width SMLAs (diamond).

Fig. 4.
Fig. 4.

Electroluminescence as a function of the wavelengh of the OLEDs that have the auxiliary electrode without SMLAs (square), with 78 μm width SMLAs (circle), and with 312 μm width SMLAs (diamond), at a current density of 100mA/cm2.

Fig. 5.
Fig. 5.

Photographs of two types of OLEDs: (a) with only the auxiliary electrode (device A) and (b) with both the auxiliary electrode and SMLAs (device B).

Tables (2)

Tables Icon

Table 1. Three Types of Fabricated Devices for Investigating the Effect of the SMLAs

Tables Icon

Table 2. Haze and Total, Parallel, Diffuse Transmittance of the Four Types of Substrates

Metrics