Abstract

A novel scheme to realize a low-cost and wideband frequency tunable optoelectronic oscillator based on a directly modulated distributed feedback (DFB) semiconductor laser is proposed and experimentally demonstrated. In the proposed scheme, neither an external modulator nor an electrical filter is used, and no more than 25 dB of the electrical loop gain is required due to the high modulation efficiency of the relaxation oscillation frequency of the DFB laser. Microwave signals with frequency coarsely tuned from 3.77 to 8.75 GHz are generated by changing the bias current and operation temperature of the DFB laser. The single sideband phase noise of the generated 6.97 GHz microwave signal is measured to be 103.6dBc/Hz at 10 kHz offset.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. S. Yao and L. Maleki, J. Opt. Soc. Am. B 13, 1725 (1996).
    [CrossRef]
  2. H. Tsuchida and M. Suzuki, IEEE Photon. Technol. Lett. 17, 211 (2005).
    [CrossRef]
  3. X. S. Yao and L. Maleki, in Microwave Photonics 1996 (MWP ’96), Technical Digest (IEEE, 1996), pp. 265–268.
  4. H. K. Sung, X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, IEEE J. Sel. Top. Quantum Electron. 15, 572 (2009).
    [CrossRef]
  5. S. Poinsot, H. Porte, J. Goedgebuer, W. T. Rhodes, and B. Boussert, Opt. Lett. 27, 1300 (2002).
    [CrossRef]
  6. E. Shumakher, S. Ó. Dúill, and G. Eisenstein, J. Lightwave Technol. 27, 4063 (2009).
    [CrossRef]
  7. J. Capmany, B. Ortega, and D. Pastor, J. Lightwave Technol. 24, 201 (2006).
    [CrossRef]
  8. Z. Tang, S. Pan, D. Zhu, R. Guo, Y. Zhao, M. Pan, D. Ben, and J. P. Yao, IEEE Photon. Technol. Lett. 24, 1487 (2012).
    [CrossRef]
  9. W. Li and J. P. Yao, IEEE Trans. Microwave Theor. Tech. 60, 1735 (2012).
  10. X. Xie, C. Zhang, T. Sun, P. Guo, X. Zhu, L. Zhu, W. Hu, and Z. Chen, Opt. Lett. 38, 655 (2013).
    [CrossRef]
  11. K. Y. Lau and A. Yariv, IEEE J. Quantum Electron. QE-21, 121 (1985).
  12. H. K. Sung, E. K. Lau, and M. C. Wu, IEEE J. Sel. Top. Quantum Electron. 13, 1215 (2007).
    [CrossRef]
  13. Y. Jiang, J. Yu, Y. Wang, L. Zhang, and E. Yang, IEEE Photon. Technol. Lett. 19, 807 (2007).
    [CrossRef]

2013 (1)

2012 (2)

Z. Tang, S. Pan, D. Zhu, R. Guo, Y. Zhao, M. Pan, D. Ben, and J. P. Yao, IEEE Photon. Technol. Lett. 24, 1487 (2012).
[CrossRef]

W. Li and J. P. Yao, IEEE Trans. Microwave Theor. Tech. 60, 1735 (2012).

2009 (2)

H. K. Sung, X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, IEEE J. Sel. Top. Quantum Electron. 15, 572 (2009).
[CrossRef]

E. Shumakher, S. Ó. Dúill, and G. Eisenstein, J. Lightwave Technol. 27, 4063 (2009).
[CrossRef]

2007 (2)

H. K. Sung, E. K. Lau, and M. C. Wu, IEEE J. Sel. Top. Quantum Electron. 13, 1215 (2007).
[CrossRef]

Y. Jiang, J. Yu, Y. Wang, L. Zhang, and E. Yang, IEEE Photon. Technol. Lett. 19, 807 (2007).
[CrossRef]

2006 (1)

2005 (1)

H. Tsuchida and M. Suzuki, IEEE Photon. Technol. Lett. 17, 211 (2005).
[CrossRef]

2002 (1)

1996 (1)

1985 (1)

K. Y. Lau and A. Yariv, IEEE J. Quantum Electron. QE-21, 121 (1985).

Ben, D.

Z. Tang, S. Pan, D. Zhu, R. Guo, Y. Zhao, M. Pan, D. Ben, and J. P. Yao, IEEE Photon. Technol. Lett. 24, 1487 (2012).
[CrossRef]

Boussert, B.

Capmany, J.

Chang-Hasnain, C. J.

H. K. Sung, X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, IEEE J. Sel. Top. Quantum Electron. 15, 572 (2009).
[CrossRef]

Chen, Z.

Dúill, S. Ó.

Eisenstein, G.

Goedgebuer, J.

Guo, P.

Guo, R.

Z. Tang, S. Pan, D. Zhu, R. Guo, Y. Zhao, M. Pan, D. Ben, and J. P. Yao, IEEE Photon. Technol. Lett. 24, 1487 (2012).
[CrossRef]

Hu, W.

Jiang, Y.

Y. Jiang, J. Yu, Y. Wang, L. Zhang, and E. Yang, IEEE Photon. Technol. Lett. 19, 807 (2007).
[CrossRef]

Lau, E. K.

H. K. Sung, X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, IEEE J. Sel. Top. Quantum Electron. 15, 572 (2009).
[CrossRef]

H. K. Sung, E. K. Lau, and M. C. Wu, IEEE J. Sel. Top. Quantum Electron. 13, 1215 (2007).
[CrossRef]

Lau, K. Y.

K. Y. Lau and A. Yariv, IEEE J. Quantum Electron. QE-21, 121 (1985).

Li, W.

W. Li and J. P. Yao, IEEE Trans. Microwave Theor. Tech. 60, 1735 (2012).

Maleki, L.

X. S. Yao and L. Maleki, J. Opt. Soc. Am. B 13, 1725 (1996).
[CrossRef]

X. S. Yao and L. Maleki, in Microwave Photonics 1996 (MWP ’96), Technical Digest (IEEE, 1996), pp. 265–268.

Ortega, B.

Pan, M.

Z. Tang, S. Pan, D. Zhu, R. Guo, Y. Zhao, M. Pan, D. Ben, and J. P. Yao, IEEE Photon. Technol. Lett. 24, 1487 (2012).
[CrossRef]

Pan, S.

Z. Tang, S. Pan, D. Zhu, R. Guo, Y. Zhao, M. Pan, D. Ben, and J. P. Yao, IEEE Photon. Technol. Lett. 24, 1487 (2012).
[CrossRef]

Parekh, D.

H. K. Sung, X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, IEEE J. Sel. Top. Quantum Electron. 15, 572 (2009).
[CrossRef]

Pastor, D.

Poinsot, S.

Porte, H.

Rhodes, W. T.

Shumakher, E.

Sun, T.

Sung, H. K.

H. K. Sung, X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, IEEE J. Sel. Top. Quantum Electron. 15, 572 (2009).
[CrossRef]

H. K. Sung, E. K. Lau, and M. C. Wu, IEEE J. Sel. Top. Quantum Electron. 13, 1215 (2007).
[CrossRef]

Suzuki, M.

H. Tsuchida and M. Suzuki, IEEE Photon. Technol. Lett. 17, 211 (2005).
[CrossRef]

Tang, Z.

Z. Tang, S. Pan, D. Zhu, R. Guo, Y. Zhao, M. Pan, D. Ben, and J. P. Yao, IEEE Photon. Technol. Lett. 24, 1487 (2012).
[CrossRef]

Tsuchida, H.

H. Tsuchida and M. Suzuki, IEEE Photon. Technol. Lett. 17, 211 (2005).
[CrossRef]

Wang, Y.

Y. Jiang, J. Yu, Y. Wang, L. Zhang, and E. Yang, IEEE Photon. Technol. Lett. 19, 807 (2007).
[CrossRef]

Wu, M. C.

H. K. Sung, X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, IEEE J. Sel. Top. Quantum Electron. 15, 572 (2009).
[CrossRef]

H. K. Sung, E. K. Lau, and M. C. Wu, IEEE J. Sel. Top. Quantum Electron. 13, 1215 (2007).
[CrossRef]

Xie, X.

Yang, E.

Y. Jiang, J. Yu, Y. Wang, L. Zhang, and E. Yang, IEEE Photon. Technol. Lett. 19, 807 (2007).
[CrossRef]

Yao, J. P.

W. Li and J. P. Yao, IEEE Trans. Microwave Theor. Tech. 60, 1735 (2012).

Z. Tang, S. Pan, D. Zhu, R. Guo, Y. Zhao, M. Pan, D. Ben, and J. P. Yao, IEEE Photon. Technol. Lett. 24, 1487 (2012).
[CrossRef]

Yao, X. S.

X. S. Yao and L. Maleki, J. Opt. Soc. Am. B 13, 1725 (1996).
[CrossRef]

X. S. Yao and L. Maleki, in Microwave Photonics 1996 (MWP ’96), Technical Digest (IEEE, 1996), pp. 265–268.

Yariv, A.

K. Y. Lau and A. Yariv, IEEE J. Quantum Electron. QE-21, 121 (1985).

Yu, J.

Y. Jiang, J. Yu, Y. Wang, L. Zhang, and E. Yang, IEEE Photon. Technol. Lett. 19, 807 (2007).
[CrossRef]

Zhang, C.

Zhang, L.

Y. Jiang, J. Yu, Y. Wang, L. Zhang, and E. Yang, IEEE Photon. Technol. Lett. 19, 807 (2007).
[CrossRef]

Zhao, X.

H. K. Sung, X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, IEEE J. Sel. Top. Quantum Electron. 15, 572 (2009).
[CrossRef]

Zhao, Y.

Z. Tang, S. Pan, D. Zhu, R. Guo, Y. Zhao, M. Pan, D. Ben, and J. P. Yao, IEEE Photon. Technol. Lett. 24, 1487 (2012).
[CrossRef]

Zhu, D.

Z. Tang, S. Pan, D. Zhu, R. Guo, Y. Zhao, M. Pan, D. Ben, and J. P. Yao, IEEE Photon. Technol. Lett. 24, 1487 (2012).
[CrossRef]

Zhu, L.

Zhu, X.

IEEE J. Quantum Electron. (1)

K. Y. Lau and A. Yariv, IEEE J. Quantum Electron. QE-21, 121 (1985).

IEEE J. Sel. Top. Quantum Electron. (2)

H. K. Sung, E. K. Lau, and M. C. Wu, IEEE J. Sel. Top. Quantum Electron. 13, 1215 (2007).
[CrossRef]

H. K. Sung, X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, IEEE J. Sel. Top. Quantum Electron. 15, 572 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Z. Tang, S. Pan, D. Zhu, R. Guo, Y. Zhao, M. Pan, D. Ben, and J. P. Yao, IEEE Photon. Technol. Lett. 24, 1487 (2012).
[CrossRef]

H. Tsuchida and M. Suzuki, IEEE Photon. Technol. Lett. 17, 211 (2005).
[CrossRef]

Y. Jiang, J. Yu, Y. Wang, L. Zhang, and E. Yang, IEEE Photon. Technol. Lett. 19, 807 (2007).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

W. Li and J. P. Yao, IEEE Trans. Microwave Theor. Tech. 60, 1735 (2012).

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Other (1)

X. S. Yao and L. Maleki, in Microwave Photonics 1996 (MWP ’96), Technical Digest (IEEE, 1996), pp. 265–268.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the proposed OEO. ISO, isolator; PC, polarization controller; PBS, polarization beam splitter; PBC, polarization beam combiner; OSA, optical spectrum analyzer; PD, photodetector; LNA, low noise amplifier; Att, attenuator; ESA, electrical spectrum analyzer.

Fig. 2.
Fig. 2.

Measured frequency response of the DFB laser at different operation temperature (T) and bias current (Ib). (a) Ib is fixed at 20 mA. (b) T is fixed at 25°C.

Fig. 3.
Fig. 3.

Spectra of the generated electrical signals with frequency coarsely tuned from 3.77 to 8.75 GHz.

Fig. 4.
Fig. 4.

Oscillation conditions of the frequencies plotted in Fig. 3, which show the relationship between the fosc and Ib and T of the laser.

Fig. 5.
Fig. 5.

Phase noise of the generated 6.97 GHz microwave signal. Inset, electrical spectrum of the generated 6.97 GHz microwave signal in 1 MHz span. Resolution bandwidth = 9.1 kHz..

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

fr=gγpP0/2π,

Metrics