Abstract

The quality enhancement of a single fringe pattern is a challenging task in speckle interferometry. Fringe patterns suffer greatly from three adverse variations (nonuniform background, speckle noise, and intensity modulation). In this Letter, we propose a three-layer filtering strategy for noisy fringe patterns. The first layer is aimed at high-frequency speckle noises and low-frequency background. The second layer is for remaining speckle noises distributed in the middle-frequency band. The third layer will further implement quality enhancement by a phase-recovery technique. The proposed strategy is quantitatively evaluated by different indexes and verified to be effective through numerous comparative experiments.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Legarda-Sáenz, W. Osten, and W. Jüptner, Appl. Opt. 41, 5519 (2002).
    [CrossRef]
  2. K. Qian, Opt. Lasers Eng. 45, 304 (2007).
    [CrossRef]
  3. H. Y. H. Huang, L. Tian, Z. Zhang, Y. Liu, Z. Chen, and G. Barbastathis, Opt. Express 20, 14075 (2012).
    [CrossRef]
  4. P. Memmolo, M. Iannone, M. Ventre, P. A. Netti, A. Finizio, M. Paturzo, and P. Ferraro, Appl. Opt. 52, 1453 (2013).
    [CrossRef]
  5. D. W. Robinson and G. T. Reid, Interferogram Analysis (Institute of Physics, 1993).
  6. M. B. Bernini, A. Federico, and G. H. Kaufmann, Appl. Opt. 47, 2592 (2008).
    [CrossRef]
  7. X. Zhou, A. G. Podoleanu, Z. Yang, T. Yang, and H. Zhao, Opt. Express 20, 24247 (2012).
    [CrossRef]
  8. X. Zhou, T. Yang, H. Zou, and H. Zhao, Opt. Lett. 37, 1904 (2012).
    [CrossRef]
  9. X. Zhou, H. Zhao, and T. Jiang, Opt. Lett. 34, 2033 (2009).
    [CrossRef]
  10. Y. Zhou and H. Li, Opt. Express 19, 18207 (2011).
    [CrossRef]
  11. S. M. A. Bhuiyan, R. R. Adhami, and J. F. Khan, EURASIP J. Adv. Signal Process. 2008, 1 (2008).
    [CrossRef]
  12. P. Flandrin, P. Goncalves, and G. Rilling, The Hilbert-Huang Transform and Its Applications (World Scientific, 2005).
  13. Z. Wang and A. C. Bovik, IEEE Signal Process. Lett. 9, 81 (2002).
    [CrossRef]
  14. K. G. Larkin, J. Opt. Soc. Am. A 18, 1871 (2001).
    [CrossRef]
  15. K. G. Larkin, D. J. Bone, and M. A. Oldfield, J. Opt. Soc. Am. A 18, 1862 (2001).
    [CrossRef]
  16. M. Trusiak, K. Patorski, and M. Wielgus, Opt. Express 20, 23463 (2012).
    [CrossRef]
  17. T. R. Crimmins, Appl. Opt. 24, 1438 (1985).
    [CrossRef]

2013 (1)

2012 (4)

2011 (1)

2009 (1)

2008 (2)

S. M. A. Bhuiyan, R. R. Adhami, and J. F. Khan, EURASIP J. Adv. Signal Process. 2008, 1 (2008).
[CrossRef]

M. B. Bernini, A. Federico, and G. H. Kaufmann, Appl. Opt. 47, 2592 (2008).
[CrossRef]

2007 (1)

K. Qian, Opt. Lasers Eng. 45, 304 (2007).
[CrossRef]

2002 (2)

R. Legarda-Sáenz, W. Osten, and W. Jüptner, Appl. Opt. 41, 5519 (2002).
[CrossRef]

Z. Wang and A. C. Bovik, IEEE Signal Process. Lett. 9, 81 (2002).
[CrossRef]

2001 (2)

1985 (1)

Adhami, R. R.

S. M. A. Bhuiyan, R. R. Adhami, and J. F. Khan, EURASIP J. Adv. Signal Process. 2008, 1 (2008).
[CrossRef]

Barbastathis, G.

Bernini, M. B.

Bhuiyan, S. M. A.

S. M. A. Bhuiyan, R. R. Adhami, and J. F. Khan, EURASIP J. Adv. Signal Process. 2008, 1 (2008).
[CrossRef]

Bone, D. J.

Bovik, A. C.

Z. Wang and A. C. Bovik, IEEE Signal Process. Lett. 9, 81 (2002).
[CrossRef]

Chen, Z.

Crimmins, T. R.

Federico, A.

Ferraro, P.

Finizio, A.

Flandrin, P.

P. Flandrin, P. Goncalves, and G. Rilling, The Hilbert-Huang Transform and Its Applications (World Scientific, 2005).

Goncalves, P.

P. Flandrin, P. Goncalves, and G. Rilling, The Hilbert-Huang Transform and Its Applications (World Scientific, 2005).

Huang, H. Y. H.

Iannone, M.

Jiang, T.

Jüptner, W.

Kaufmann, G. H.

Khan, J. F.

S. M. A. Bhuiyan, R. R. Adhami, and J. F. Khan, EURASIP J. Adv. Signal Process. 2008, 1 (2008).
[CrossRef]

Larkin, K. G.

Legarda-Sáenz, R.

Li, H.

Liu, Y.

Memmolo, P.

Netti, P. A.

Oldfield, M. A.

Osten, W.

Patorski, K.

Paturzo, M.

Podoleanu, A. G.

Qian, K.

K. Qian, Opt. Lasers Eng. 45, 304 (2007).
[CrossRef]

Reid, G. T.

D. W. Robinson and G. T. Reid, Interferogram Analysis (Institute of Physics, 1993).

Rilling, G.

P. Flandrin, P. Goncalves, and G. Rilling, The Hilbert-Huang Transform and Its Applications (World Scientific, 2005).

Robinson, D. W.

D. W. Robinson and G. T. Reid, Interferogram Analysis (Institute of Physics, 1993).

Tian, L.

Trusiak, M.

Ventre, M.

Wang, Z.

Z. Wang and A. C. Bovik, IEEE Signal Process. Lett. 9, 81 (2002).
[CrossRef]

Wielgus, M.

Yang, T.

Yang, Z.

Zhang, Z.

Zhao, H.

Zhou, X.

Zhou, Y.

Zou, H.

Appl. Opt. (4)

EURASIP J. Adv. Signal Process. (1)

S. M. A. Bhuiyan, R. R. Adhami, and J. F. Khan, EURASIP J. Adv. Signal Process. 2008, 1 (2008).
[CrossRef]

IEEE Signal Process. Lett. (1)

Z. Wang and A. C. Bovik, IEEE Signal Process. Lett. 9, 81 (2002).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Express (4)

Opt. Lasers Eng. (1)

K. Qian, Opt. Lasers Eng. 45, 304 (2007).
[CrossRef]

Opt. Lett. (2)

Other (2)

D. W. Robinson and G. T. Reid, Interferogram Analysis (Institute of Physics, 1993).

P. Flandrin, P. Goncalves, and G. Rilling, The Hilbert-Huang Transform and Its Applications (World Scientific, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Curves of noise-only BIMF energies and actual BIMF energies.

Fig. 2.
Fig. 2.

(a) Noisy fringe pattern. (b) High-frequency noises. (c) Desired information (Q=0.8962). (d) Nonuniform background.

Fig. 3.
Fig. 3.

(a) Original fringe pattern. (b) Fringe pattern with noises added to region A.

Fig. 4.
Fig. 4.

(a) Fringe pattern (Q=0.7056) filtered by Hilbert transform without BEMD. (b) Amplitude distribution in Hilbert space. (c) The fringe pattern (Q=0.9217) filtered by Hilbert transform with BEMD.

Fig. 5.
Fig. 5.

Curve of the quality index of filtered fringe patterns with different threshold values.

Fig. 6.
Fig. 6.

(a) Wrapped phase with noises. (b) Unwrapped phase by SLSM. (c) Recovered phase (Q=0.4458). (d) Result by two-layer filtering (Q=0.8341). (e) Unwrapped phase by applying SLSM to (d). (f) Recovered phase (Q=0.9386).

Fig. 7.
Fig. 7.

Quality index of three methods under Gaussian noise with different standard deviation.

Fig. 8.
Fig. 8.

(a) Experimental fringe pattern. (b) Enhanced fringe pattern (SNR=7.1468) by the first-layer filtering. (c) Enhanced fringe pattern (SNR=9.5647) by the second-layer filtering. (d) Enhanced fringe pattern (SNR=11.6667) by the third-layer filtering.

Tables (2)

Tables Icon

Table 1. Quality Index Values Obtained by Different Phase Recovery Methods with or without Two-Layer Filtering

Tables Icon

Table 2. Values of the SNR Obtained by Different Enhancement Methods for Fig. 8(a)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E^k=E12βρk,
sA(x,y)=s(x,y)+isH(x,y),
P(λ1,λ2)=λ1+iλ2λ12+λ22,
sH=iexp(iθ)F1{P(λ1,λ2)F[s(x,y)]},
|A(x,y)|=s2(x,y)+|F1{P(λ1,λ2)F[s(x,y)]}|2.

Metrics