Abstract

Accurate band-to-band registration is crucial when an acousto-optic tunable filter (AOTF)-based imaging spectrometer is used to acquire spectral data on an unstable platform. However, it is difficult to registrate hyperspectral images accurately using traditional image registration algorithms, which will seriously affect the accurate acquisition of spectra and reduce the classification accuracy. Here we demonstrate an optical configuration that acquires the diffracted and undiffracted beam of the AOTF simultaneously. These two beams have identical geometrical optical characteristic and suffer from the same image motion caused by the platform jitter. Compared with the diffracted beam, however, the intensity of the undiffracted beam is changeless when tuning the AOTF. Therefore, the use of undiffracted beams allows accurate measurement of image motion in different bands. The experiment shows that this technique greatly improves the registration accuracy of spectral images with poor correlation and low SNR.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. C. Chang, Appl. Phys. Lett. 25, 370 (1974).
    [CrossRef]
  2. J. J. Puschell and P. Tompkins, Proc. SPIE 3117, 36 (1997).
  3. H. Erives and G. J. Fitzgerald, IEEE Geosci. Remote Sens. Lett. 3, 397 (2006).
    [CrossRef]
  4. P. H. Swain, V. C. Vanderbilt, and C. D. Jobusch, IEEE Trans. Geosci. Remote Sens. 3, 370 (1982).
  5. K. Janschek, V. Tchernykh, and S. Dyblenko, Control Eng. Pract. 15, 333 (2007).
  6. Z. Yi, C. Zhiguo, and X. Yang, Electron. Lett. 44, 107 (2008).
    [CrossRef]
  7. J. P. Kern and M. S. Pattichis, IEEE Trans. Geosci. Remote Sens. 45, 1494 (2007).
  8. D. R. Suhre and J. G. Theodore, Appl. Opt. 35, 4494 (1996).
  9. J. S. Sirkis, Opt. Eng. 29, 1485 (1990).
    [CrossRef]
  10. A. Goshtasby, Image Vis. Comput. 6, 255 (1988).
  11. H. Foroosh, J. B. Zerubia, and M. Berthod, IEEE Trans. Image Process. 11, 188 (2002).
  12. Y. Qian, Y. Li, J. Shao, and H. Miao, Opt. Express 19, 10762 (2011).
    [CrossRef]

2011 (1)

2008 (1)

Z. Yi, C. Zhiguo, and X. Yang, Electron. Lett. 44, 107 (2008).
[CrossRef]

2007 (2)

J. P. Kern and M. S. Pattichis, IEEE Trans. Geosci. Remote Sens. 45, 1494 (2007).

K. Janschek, V. Tchernykh, and S. Dyblenko, Control Eng. Pract. 15, 333 (2007).

2006 (1)

H. Erives and G. J. Fitzgerald, IEEE Geosci. Remote Sens. Lett. 3, 397 (2006).
[CrossRef]

2002 (1)

H. Foroosh, J. B. Zerubia, and M. Berthod, IEEE Trans. Image Process. 11, 188 (2002).

1997 (1)

J. J. Puschell and P. Tompkins, Proc. SPIE 3117, 36 (1997).

1996 (1)

1990 (1)

J. S. Sirkis, Opt. Eng. 29, 1485 (1990).
[CrossRef]

1988 (1)

A. Goshtasby, Image Vis. Comput. 6, 255 (1988).

1982 (1)

P. H. Swain, V. C. Vanderbilt, and C. D. Jobusch, IEEE Trans. Geosci. Remote Sens. 3, 370 (1982).

1974 (1)

I. C. Chang, Appl. Phys. Lett. 25, 370 (1974).
[CrossRef]

Berthod, M.

H. Foroosh, J. B. Zerubia, and M. Berthod, IEEE Trans. Image Process. 11, 188 (2002).

Chang, I. C.

I. C. Chang, Appl. Phys. Lett. 25, 370 (1974).
[CrossRef]

Dyblenko, S.

K. Janschek, V. Tchernykh, and S. Dyblenko, Control Eng. Pract. 15, 333 (2007).

Erives, H.

H. Erives and G. J. Fitzgerald, IEEE Geosci. Remote Sens. Lett. 3, 397 (2006).
[CrossRef]

Fitzgerald, G. J.

H. Erives and G. J. Fitzgerald, IEEE Geosci. Remote Sens. Lett. 3, 397 (2006).
[CrossRef]

Foroosh, H.

H. Foroosh, J. B. Zerubia, and M. Berthod, IEEE Trans. Image Process. 11, 188 (2002).

Goshtasby, A.

A. Goshtasby, Image Vis. Comput. 6, 255 (1988).

Janschek, K.

K. Janschek, V. Tchernykh, and S. Dyblenko, Control Eng. Pract. 15, 333 (2007).

Jobusch, C. D.

P. H. Swain, V. C. Vanderbilt, and C. D. Jobusch, IEEE Trans. Geosci. Remote Sens. 3, 370 (1982).

Kern, J. P.

J. P. Kern and M. S. Pattichis, IEEE Trans. Geosci. Remote Sens. 45, 1494 (2007).

Li, Y.

Miao, H.

Pattichis, M. S.

J. P. Kern and M. S. Pattichis, IEEE Trans. Geosci. Remote Sens. 45, 1494 (2007).

Puschell, J. J.

J. J. Puschell and P. Tompkins, Proc. SPIE 3117, 36 (1997).

Qian, Y.

Shao, J.

Sirkis, J. S.

J. S. Sirkis, Opt. Eng. 29, 1485 (1990).
[CrossRef]

Suhre, D. R.

Swain, P. H.

P. H. Swain, V. C. Vanderbilt, and C. D. Jobusch, IEEE Trans. Geosci. Remote Sens. 3, 370 (1982).

Tchernykh, V.

K. Janschek, V. Tchernykh, and S. Dyblenko, Control Eng. Pract. 15, 333 (2007).

Theodore, J. G.

Tompkins, P.

J. J. Puschell and P. Tompkins, Proc. SPIE 3117, 36 (1997).

Vanderbilt, V. C.

P. H. Swain, V. C. Vanderbilt, and C. D. Jobusch, IEEE Trans. Geosci. Remote Sens. 3, 370 (1982).

Yang, X.

Z. Yi, C. Zhiguo, and X. Yang, Electron. Lett. 44, 107 (2008).
[CrossRef]

Yi, Z.

Z. Yi, C. Zhiguo, and X. Yang, Electron. Lett. 44, 107 (2008).
[CrossRef]

Zerubia, J. B.

H. Foroosh, J. B. Zerubia, and M. Berthod, IEEE Trans. Image Process. 11, 188 (2002).

Zhiguo, C.

Z. Yi, C. Zhiguo, and X. Yang, Electron. Lett. 44, 107 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

I. C. Chang, Appl. Phys. Lett. 25, 370 (1974).
[CrossRef]

Control Eng. Pract. (1)

K. Janschek, V. Tchernykh, and S. Dyblenko, Control Eng. Pract. 15, 333 (2007).

Electron. Lett. (1)

Z. Yi, C. Zhiguo, and X. Yang, Electron. Lett. 44, 107 (2008).
[CrossRef]

IEEE Geosci. Remote Sens. Lett. (1)

H. Erives and G. J. Fitzgerald, IEEE Geosci. Remote Sens. Lett. 3, 397 (2006).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (2)

P. H. Swain, V. C. Vanderbilt, and C. D. Jobusch, IEEE Trans. Geosci. Remote Sens. 3, 370 (1982).

J. P. Kern and M. S. Pattichis, IEEE Trans. Geosci. Remote Sens. 45, 1494 (2007).

IEEE Trans. Image Process. (1)

H. Foroosh, J. B. Zerubia, and M. Berthod, IEEE Trans. Image Process. 11, 188 (2002).

Image Vis. Comput. (1)

A. Goshtasby, Image Vis. Comput. 6, 255 (1988).

Opt. Eng. (1)

J. S. Sirkis, Opt. Eng. 29, 1485 (1990).
[CrossRef]

Opt. Express (1)

Proc. SPIE (1)

J. J. Puschell and P. Tompkins, Proc. SPIE 3117, 36 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Images of 508 nm (left) and 905 nm (right) Hyperion data.

Fig. 2.
Fig. 2.

Images of 600 nm (left) and 885 nm (right) AOTF data.

Fig. 3.
Fig. 3.

Schematic of dual path AOTF imaging spectrometer.

Fig. 4.
Fig. 4.

Laboratory prototype of dual path AOTF imaging system.

Fig. 5.
Fig. 5.

Error using undiffracted path motion shift to subsistute actual band-to-band misregistraion.

Fig. 6.
Fig. 6.

Target for simulating platform jitter caused object motion.

Fig. 7.
Fig. 7.

Mapped and resampled spectral images of 560 nm band (left) and 762 nm band (right).

Fig. 8.
Fig. 8.

Curve of MI value versus horizontal displacement.

Tables (2)

Tables Icon

Table 1. Registration Results of Three Algorithms

Tables Icon

Table 2. BBR Accuracy Budget of Dual-Path System

Metrics