Abstract

A highly stable coherent beam-combining system has been designed to measure self-phasing in fiber lasers due to nonlinear effects. Whereas self-phasing in previous coherent combination experiments has been principally attributed to wavelength shifting, these wavelength effects have been efficiently suppressed in our experiment by using a dual-core fiber with closely balanced optical path lengths. The self-phasing from nonlinear effects could then be measured independently and directly by common-path interferometry with a probe laser. The Kramers–Kronig effect in the fiber gain media was observed to induce a phase shift that effectively canceled the applied path length errors, resulting in efficient lasing under all phase conditions. This process was demonstrated to result in robust lasing over a large range of pump conditions.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Shirakawa, T. Saitou, T. Sekiguchi, and K. Ueda, Opt. Express 10, 1167 (2002).
    [CrossRef]
  2. C. J. Corcoran and F. Durville, Appl. Phys. Lett. 86, 201118 (2005).
    [CrossRef]
  3. M. Khajavikhan, K. John, and J. R. Leger, IEEE J. Quantum Electron. 46, 1221 (2010).
    [CrossRef]
  4. C. Wan, B. Tiffany, and J. R. Leger, IEEE J. Quantum Electron. 47, 770 (2011).
    [CrossRef]
  5. D. Sabourdy, V. Kermene, A. Defarges-Berthelemot, L. Lefort, and A. Berthelemy, Opt. Express 11, 87 (2003).
    [CrossRef]
  6. W.-Z. Chang, T.-W. Wu, H. G. Winful, and A. Galvanauskas, Opt. Express 18, 9634 (2010).
    [CrossRef]
  7. E. J. Bochove, A. B. Aceves, Y. Braiman, P. Colet, R. Deiterding, A. Jacobo, C. A. Miller, C. Rhodes, and S. A. Shakir, IEEE J. Quantum Electron. 47, 777 (2011).
  8. A. P. Napartovich, N. N. Elkin, and D. V. Vysotsky, Proc. SPIE 7914, 791428 (2011).
    [CrossRef]
  9. C. J. Corcoran and F. Durville, IEEE J. Sel. Top. Quantum Electron. 15, 294 (2009).
    [CrossRef]
  10. J. W. Arkwright, P. Elango, G. R. Atkins, T. Whitbread, and J. F. Digonnet, J. Lightwave Technol. 16, 798 (1998).
    [CrossRef]
  11. J. R. Leger, G. J. Swanson, and W. B. Veldkamp, Appl. Phys. Lett. 48, 888 (1986).
    [CrossRef]
  12. M. Khajavikhan and J. R. Leger, IEEE J. Sel. Top. Quantum Electron. 15, 281 (2009).
    [CrossRef]
  13. J. W. Goodman, Introduction to Fourier Optics (Roberts, 2005).

2011

C. Wan, B. Tiffany, and J. R. Leger, IEEE J. Quantum Electron. 47, 770 (2011).
[CrossRef]

E. J. Bochove, A. B. Aceves, Y. Braiman, P. Colet, R. Deiterding, A. Jacobo, C. A. Miller, C. Rhodes, and S. A. Shakir, IEEE J. Quantum Electron. 47, 777 (2011).

A. P. Napartovich, N. N. Elkin, and D. V. Vysotsky, Proc. SPIE 7914, 791428 (2011).
[CrossRef]

2010

M. Khajavikhan, K. John, and J. R. Leger, IEEE J. Quantum Electron. 46, 1221 (2010).
[CrossRef]

W.-Z. Chang, T.-W. Wu, H. G. Winful, and A. Galvanauskas, Opt. Express 18, 9634 (2010).
[CrossRef]

2009

M. Khajavikhan and J. R. Leger, IEEE J. Sel. Top. Quantum Electron. 15, 281 (2009).
[CrossRef]

C. J. Corcoran and F. Durville, IEEE J. Sel. Top. Quantum Electron. 15, 294 (2009).
[CrossRef]

2005

C. J. Corcoran and F. Durville, Appl. Phys. Lett. 86, 201118 (2005).
[CrossRef]

2003

2002

1998

1986

J. R. Leger, G. J. Swanson, and W. B. Veldkamp, Appl. Phys. Lett. 48, 888 (1986).
[CrossRef]

Aceves, A. B.

E. J. Bochove, A. B. Aceves, Y. Braiman, P. Colet, R. Deiterding, A. Jacobo, C. A. Miller, C. Rhodes, and S. A. Shakir, IEEE J. Quantum Electron. 47, 777 (2011).

Arkwright, J. W.

Atkins, G. R.

Berthelemy, A.

Bochove, E. J.

E. J. Bochove, A. B. Aceves, Y. Braiman, P. Colet, R. Deiterding, A. Jacobo, C. A. Miller, C. Rhodes, and S. A. Shakir, IEEE J. Quantum Electron. 47, 777 (2011).

Braiman, Y.

E. J. Bochove, A. B. Aceves, Y. Braiman, P. Colet, R. Deiterding, A. Jacobo, C. A. Miller, C. Rhodes, and S. A. Shakir, IEEE J. Quantum Electron. 47, 777 (2011).

Chang, W.-Z.

Colet, P.

E. J. Bochove, A. B. Aceves, Y. Braiman, P. Colet, R. Deiterding, A. Jacobo, C. A. Miller, C. Rhodes, and S. A. Shakir, IEEE J. Quantum Electron. 47, 777 (2011).

Corcoran, C. J.

C. J. Corcoran and F. Durville, IEEE J. Sel. Top. Quantum Electron. 15, 294 (2009).
[CrossRef]

C. J. Corcoran and F. Durville, Appl. Phys. Lett. 86, 201118 (2005).
[CrossRef]

Defarges-Berthelemot, A.

Deiterding, R.

E. J. Bochove, A. B. Aceves, Y. Braiman, P. Colet, R. Deiterding, A. Jacobo, C. A. Miller, C. Rhodes, and S. A. Shakir, IEEE J. Quantum Electron. 47, 777 (2011).

Digonnet, J. F.

Durville, F.

C. J. Corcoran and F. Durville, IEEE J. Sel. Top. Quantum Electron. 15, 294 (2009).
[CrossRef]

C. J. Corcoran and F. Durville, Appl. Phys. Lett. 86, 201118 (2005).
[CrossRef]

Elango, P.

Elkin, N. N.

A. P. Napartovich, N. N. Elkin, and D. V. Vysotsky, Proc. SPIE 7914, 791428 (2011).
[CrossRef]

Galvanauskas, A.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts, 2005).

Jacobo, A.

E. J. Bochove, A. B. Aceves, Y. Braiman, P. Colet, R. Deiterding, A. Jacobo, C. A. Miller, C. Rhodes, and S. A. Shakir, IEEE J. Quantum Electron. 47, 777 (2011).

John, K.

M. Khajavikhan, K. John, and J. R. Leger, IEEE J. Quantum Electron. 46, 1221 (2010).
[CrossRef]

Kermene, V.

Khajavikhan, M.

M. Khajavikhan, K. John, and J. R. Leger, IEEE J. Quantum Electron. 46, 1221 (2010).
[CrossRef]

M. Khajavikhan and J. R. Leger, IEEE J. Sel. Top. Quantum Electron. 15, 281 (2009).
[CrossRef]

Lefort, L.

Leger, J. R.

C. Wan, B. Tiffany, and J. R. Leger, IEEE J. Quantum Electron. 47, 770 (2011).
[CrossRef]

M. Khajavikhan, K. John, and J. R. Leger, IEEE J. Quantum Electron. 46, 1221 (2010).
[CrossRef]

M. Khajavikhan and J. R. Leger, IEEE J. Sel. Top. Quantum Electron. 15, 281 (2009).
[CrossRef]

J. R. Leger, G. J. Swanson, and W. B. Veldkamp, Appl. Phys. Lett. 48, 888 (1986).
[CrossRef]

Miller, C. A.

E. J. Bochove, A. B. Aceves, Y. Braiman, P. Colet, R. Deiterding, A. Jacobo, C. A. Miller, C. Rhodes, and S. A. Shakir, IEEE J. Quantum Electron. 47, 777 (2011).

Napartovich, A. P.

A. P. Napartovich, N. N. Elkin, and D. V. Vysotsky, Proc. SPIE 7914, 791428 (2011).
[CrossRef]

Rhodes, C.

E. J. Bochove, A. B. Aceves, Y. Braiman, P. Colet, R. Deiterding, A. Jacobo, C. A. Miller, C. Rhodes, and S. A. Shakir, IEEE J. Quantum Electron. 47, 777 (2011).

Sabourdy, D.

Saitou, T.

Sekiguchi, T.

Shakir, S. A.

E. J. Bochove, A. B. Aceves, Y. Braiman, P. Colet, R. Deiterding, A. Jacobo, C. A. Miller, C. Rhodes, and S. A. Shakir, IEEE J. Quantum Electron. 47, 777 (2011).

Shirakawa, A.

Swanson, G. J.

J. R. Leger, G. J. Swanson, and W. B. Veldkamp, Appl. Phys. Lett. 48, 888 (1986).
[CrossRef]

Tiffany, B.

C. Wan, B. Tiffany, and J. R. Leger, IEEE J. Quantum Electron. 47, 770 (2011).
[CrossRef]

Ueda, K.

Veldkamp, W. B.

J. R. Leger, G. J. Swanson, and W. B. Veldkamp, Appl. Phys. Lett. 48, 888 (1986).
[CrossRef]

Vysotsky, D. V.

A. P. Napartovich, N. N. Elkin, and D. V. Vysotsky, Proc. SPIE 7914, 791428 (2011).
[CrossRef]

Wan, C.

C. Wan, B. Tiffany, and J. R. Leger, IEEE J. Quantum Electron. 47, 770 (2011).
[CrossRef]

Whitbread, T.

Winful, H. G.

Wu, T.-W.

Appl. Phys. Lett.

C. J. Corcoran and F. Durville, Appl. Phys. Lett. 86, 201118 (2005).
[CrossRef]

J. R. Leger, G. J. Swanson, and W. B. Veldkamp, Appl. Phys. Lett. 48, 888 (1986).
[CrossRef]

IEEE J. Quantum Electron.

M. Khajavikhan, K. John, and J. R. Leger, IEEE J. Quantum Electron. 46, 1221 (2010).
[CrossRef]

C. Wan, B. Tiffany, and J. R. Leger, IEEE J. Quantum Electron. 47, 770 (2011).
[CrossRef]

E. J. Bochove, A. B. Aceves, Y. Braiman, P. Colet, R. Deiterding, A. Jacobo, C. A. Miller, C. Rhodes, and S. A. Shakir, IEEE J. Quantum Electron. 47, 777 (2011).

IEEE J. Sel. Top. Quantum Electron.

M. Khajavikhan and J. R. Leger, IEEE J. Sel. Top. Quantum Electron. 15, 281 (2009).
[CrossRef]

C. J. Corcoran and F. Durville, IEEE J. Sel. Top. Quantum Electron. 15, 294 (2009).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Proc. SPIE

A. P. Napartovich, N. N. Elkin, and D. V. Vysotsky, Proc. SPIE 7914, 791428 (2011).
[CrossRef]

Other

J. W. Goodman, Introduction to Fourier Optics (Roberts, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Measured lasing power and single-pass path length error as a function of applied path length error Δϕ at low pump powers (1.2 W).

Fig. 3.
Fig. 3.

Measured lasing power and single-pass path length error as a function of applied path length error Δϕ at elevated pump powers (2.2 W).

Fig. 4.
Fig. 4.

Measured differential phase shift between independently lasing fiber cores.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L=164π4cos2(2Δϕ).

Metrics