Abstract

We show the first experimental evidence of the sensitivity enhancement that can be achieved in high resolution stimulated Raman spectroscopy of gases using hollow-core photonic crystal fibers (HCPCFs). Using low power cw lasers and a HCPCF containing the gas, we have observed more than four orders of magnitude enhancement of sensitivity when compared with the cw single focus regime, and a similar sensitivity to that achieved in the more sensitive quasi-cw setups with multipass cells.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, Science 299, 358 (2003).
    [CrossRef]
  2. A. M. Cubillas, J. Hald, and J. C. Petersen, Opt. Express 16, 3976 (2008).
    [CrossRef]
  3. F. Couny and F. Benabid, J. Opt. A 11, 103002 (2009).
    [CrossRef]
  4. A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, Phys. Rev. A 70, 1 (2004).
    [CrossRef]
  5. M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, Appl. Opt. 47, 4255 (2008).
    [CrossRef]
  6. P. Esherick and A. Owyoung, Advances in Infrared and Raman Spectroscopy, R. J. H. Clark and R. E. Hester, eds. (Heyden, 1982), Vol. 9, pp. 130–187.
  7. A. Owyoung, Chemical Applications of Nonlinear Raman Spectroscopy, A. B. Harvey, ed. (Academic, 1981), pp. 281–320.
  8. T. J. Quinn, Metrologia 40, 103 (2003).
    [CrossRef]
  9. NKT Photonics, “HC-532-02 hollow core photonic bandgap fiber,” http://www.nktphotonics.com/files/files/HC-532.pdf .
  10. J. Henningsen and J. Hald, Appl. Opt. 47, 2790 (2008).
    [CrossRef]
  11. I. Dicaire, J. Beugnot, and L. Thévenaz, Appl. Opt. 49, 4604 (2010).
    [CrossRef]
  12. E. S. Creutz and L. R. Zumwalt, J. Appl. Phys. 33, 2883 (1962).
    [CrossRef]
  13. G. Herzberg, Molecular Spectra and Molecular Structure: Infrared and Raman Spectra of Polyatomic Molecules (Krieger, 1991), Chap. 2, p. 217.
  14. J. Baran, A. Grofcsik, and W. J. Jones, Mol. Phys. 45, 1291 (1982).
    [CrossRef]
  15. R. Saint-Loup, B. Lavorel, G. Millot, C. Wenger, and H. Berger, J. Raman Spectrosc. 21, 77 (1990).
    [CrossRef]
  16. J. Santos, P. Cancio, J. L. Domenech, J. Rodriguez, and D. Bermejo, Laser Chem. 12, 53 (1992).
    [CrossRef]
  17. F. Couny, F. Benabid, and P. S. Light, Opt. Lett. 31, 3574 (2006).
    [CrossRef]

2010 (1)

2009 (1)

F. Couny and F. Benabid, J. Opt. A 11, 103002 (2009).
[CrossRef]

2008 (3)

2006 (1)

2004 (1)

A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, Phys. Rev. A 70, 1 (2004).
[CrossRef]

2003 (2)

P. Russell, Science 299, 358 (2003).
[CrossRef]

T. J. Quinn, Metrologia 40, 103 (2003).
[CrossRef]

1992 (1)

J. Santos, P. Cancio, J. L. Domenech, J. Rodriguez, and D. Bermejo, Laser Chem. 12, 53 (1992).
[CrossRef]

1990 (1)

R. Saint-Loup, B. Lavorel, G. Millot, C. Wenger, and H. Berger, J. Raman Spectrosc. 21, 77 (1990).
[CrossRef]

1982 (1)

J. Baran, A. Grofcsik, and W. J. Jones, Mol. Phys. 45, 1291 (1982).
[CrossRef]

1962 (1)

E. S. Creutz and L. R. Zumwalt, J. Appl. Phys. 33, 2883 (1962).
[CrossRef]

Baran, J.

J. Baran, A. Grofcsik, and W. J. Jones, Mol. Phys. 45, 1291 (1982).
[CrossRef]

Benabid, F.

Berger, H.

R. Saint-Loup, B. Lavorel, G. Millot, C. Wenger, and H. Berger, J. Raman Spectrosc. 21, 77 (1990).
[CrossRef]

Bermejo, D.

J. Santos, P. Cancio, J. L. Domenech, J. Rodriguez, and D. Bermejo, Laser Chem. 12, 53 (1992).
[CrossRef]

Beugnot, J.

Buric, M. P.

Cancio, P.

J. Santos, P. Cancio, J. L. Domenech, J. Rodriguez, and D. Bermejo, Laser Chem. 12, 53 (1992).
[CrossRef]

Chen, K. P.

Couny, F.

Creutz, E. S.

E. S. Creutz and L. R. Zumwalt, J. Appl. Phys. 33, 2883 (1962).
[CrossRef]

Cubillas, A. M.

Dicaire, I.

Domenech, J. L.

J. Santos, P. Cancio, J. L. Domenech, J. Rodriguez, and D. Bermejo, Laser Chem. 12, 53 (1992).
[CrossRef]

Esherick, P.

P. Esherick and A. Owyoung, Advances in Infrared and Raman Spectroscopy, R. J. H. Clark and R. E. Hester, eds. (Heyden, 1982), Vol. 9, pp. 130–187.

Falk, J.

Fedotov, A. B.

A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, Phys. Rev. A 70, 1 (2004).
[CrossRef]

Grofcsik, A.

J. Baran, A. Grofcsik, and W. J. Jones, Mol. Phys. 45, 1291 (1982).
[CrossRef]

Hald, J.

Henningsen, J.

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure: Infrared and Raman Spectra of Polyatomic Molecules (Krieger, 1991), Chap. 2, p. 217.

Jones, W. J.

J. Baran, A. Grofcsik, and W. J. Jones, Mol. Phys. 45, 1291 (1982).
[CrossRef]

Konorov, S. O.

A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, Phys. Rev. A 70, 1 (2004).
[CrossRef]

Lavorel, B.

R. Saint-Loup, B. Lavorel, G. Millot, C. Wenger, and H. Berger, J. Raman Spectrosc. 21, 77 (1990).
[CrossRef]

Light, P. S.

Millot, G.

R. Saint-Loup, B. Lavorel, G. Millot, C. Wenger, and H. Berger, J. Raman Spectrosc. 21, 77 (1990).
[CrossRef]

Mitrokhin, V. P.

A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, Phys. Rev. A 70, 1 (2004).
[CrossRef]

Owyoung, A.

P. Esherick and A. Owyoung, Advances in Infrared and Raman Spectroscopy, R. J. H. Clark and R. E. Hester, eds. (Heyden, 1982), Vol. 9, pp. 130–187.

A. Owyoung, Chemical Applications of Nonlinear Raman Spectroscopy, A. B. Harvey, ed. (Academic, 1981), pp. 281–320.

Petersen, J. C.

Quinn, T. J.

T. J. Quinn, Metrologia 40, 103 (2003).
[CrossRef]

Rodriguez, J.

J. Santos, P. Cancio, J. L. Domenech, J. Rodriguez, and D. Bermejo, Laser Chem. 12, 53 (1992).
[CrossRef]

Russell, P.

P. Russell, Science 299, 358 (2003).
[CrossRef]

Saint-Loup, R.

R. Saint-Loup, B. Lavorel, G. Millot, C. Wenger, and H. Berger, J. Raman Spectrosc. 21, 77 (1990).
[CrossRef]

Santos, J.

J. Santos, P. Cancio, J. L. Domenech, J. Rodriguez, and D. Bermejo, Laser Chem. 12, 53 (1992).
[CrossRef]

Serebryannikov, E. E.

A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, Phys. Rev. A 70, 1 (2004).
[CrossRef]

Thévenaz, L.

Wenger, C.

R. Saint-Loup, B. Lavorel, G. Millot, C. Wenger, and H. Berger, J. Raman Spectrosc. 21, 77 (1990).
[CrossRef]

Woodruff, S. D.

Zheltikov, A. M.

A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, Phys. Rev. A 70, 1 (2004).
[CrossRef]

Zumwalt, L. R.

E. S. Creutz and L. R. Zumwalt, J. Appl. Phys. 33, 2883 (1962).
[CrossRef]

Appl. Opt. (3)

J. Appl. Phys. (1)

E. S. Creutz and L. R. Zumwalt, J. Appl. Phys. 33, 2883 (1962).
[CrossRef]

J. Opt. A (1)

F. Couny and F. Benabid, J. Opt. A 11, 103002 (2009).
[CrossRef]

J. Raman Spectrosc. (1)

R. Saint-Loup, B. Lavorel, G. Millot, C. Wenger, and H. Berger, J. Raman Spectrosc. 21, 77 (1990).
[CrossRef]

Laser Chem. (1)

J. Santos, P. Cancio, J. L. Domenech, J. Rodriguez, and D. Bermejo, Laser Chem. 12, 53 (1992).
[CrossRef]

Metrologia (1)

T. J. Quinn, Metrologia 40, 103 (2003).
[CrossRef]

Mol. Phys. (1)

J. Baran, A. Grofcsik, and W. J. Jones, Mol. Phys. 45, 1291 (1982).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (1)

A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, Phys. Rev. A 70, 1 (2004).
[CrossRef]

Science (1)

P. Russell, Science 299, 358 (2003).
[CrossRef]

Other (4)

NKT Photonics, “HC-532-02 hollow core photonic bandgap fiber,” http://www.nktphotonics.com/files/files/HC-532.pdf .

P. Esherick and A. Owyoung, Advances in Infrared and Raman Spectroscopy, R. J. H. Clark and R. E. Hester, eds. (Heyden, 1982), Vol. 9, pp. 130–187.

A. Owyoung, Chemical Applications of Nonlinear Raman Spectroscopy, A. B. Harvey, ed. (Academic, 1981), pp. 281–320.

G. Herzberg, Molecular Spectra and Molecular Structure: Infrared and Raman Spectra of Polyatomic Molecules (Krieger, 1991), Chap. 2, p. 217.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the experimental setup. Pol, polarization beamsplitter; DM, dichroic mirror; EOM, electro-optic modulator.

Fig. 2.
Fig. 2.

SRS spectrum of the ν1 band of CO2 in a HCPCF. The spectrum (lower trace) has been normalized to a peak intensity of one. The two upper traces are in a ×100 expanded scale. The trace at the center (blue) shows the noise level after subtraction of the slowly changing background and has been offset for clarity.

Fig. 3.
Fig. 3.

Low pressure SRS spectrum of the Q-branch of the 2ν2 component of the Fermi dyad of CO2. The time constant is 30 ms, 16 averaged scans at 0.01cm1/s.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G|δP(νprobe)P(νprobe)|Nhc2νprobe3(d2σdΩdνprobe)I(νpump)L,
GNπhc2νprobe2(d2σdΩdνprobe)P(νpump),
pt=x[(d2p32η+dv¯31+8/πdp/(ηv¯)1+1.238/πdp/(ηv¯))px],

Metrics