Abstract

Coherent imaging is barely applicable in life-science microscopy due to multiple interference artifacts. Here, we show how these interferences can be used to improve image resolution and contrast. We present a dark-field microscopy technique with evanescent illumination via total internal reflection that delivers high-contrast images of coherently scattering samples. By incoherent averaging of multiple coherent images illuminated from different directions we can resolve image structures that remain unresolved by conventional (incoherent) fluorescence microscopy. We provide images of 190 nm beads revealing resolution beyond the diffraction limit and slightly increased object distances. An analytical model is introduced that accounts for the observed effects and which is confirmed by numerical simulations. Our approach may be a route to fast, label-free, super-resolution imaging in live-cell microscopy.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rohrbach, Opt. Lett. 34, 3041 (2009).
    [CrossRef]
  2. W. M. Ash and M. K. Kim, Opt. Express 16, 9811 (2008).
    [CrossRef]
  3. M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, Opt. Lett. 36, 148 (2011).
    [CrossRef]
  4. S. Chowdhury, A.-H. Dhalla, and J. Izatt, Biomed. Opt. Express 3, 1841 (2012).
    [CrossRef]
  5. B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, Micron 38, 150 (2007).
    [CrossRef]
  6. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, Nat. Photonics 7, 113 (2013).
    [CrossRef]
  7. D. Axelrod, J. Cell Biol. 89, 141 (1981).
    [CrossRef]
  8. I. Braslavsky, R. Amit, B. M. J. Ali, O. Gileadi, A. Oppenheim, and J. Stavans, Appl. Opt. 40, 5650 (2001).
    [CrossRef]
  9. S. Kim, P. C. Blainey, C. M. Schroeder, and X. S. Xie, Nat. Methods 4, 397 (2007).
    [CrossRef]
  10. R. Fiolka, M. Beck, and A. Stemmer, Opt. Lett. 33, 1629 (2008).
    [CrossRef]
  11. P. von Olshausen, H. J. Defeu Soufo, K. Wicker, R. Heintzmann, P. L. Graumann, and A. Rohrbach, Biophys. J. 105, 1171 (2013).
    [CrossRef]

2013 (2)

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, Nat. Photonics 7, 113 (2013).
[CrossRef]

P. von Olshausen, H. J. Defeu Soufo, K. Wicker, R. Heintzmann, P. L. Graumann, and A. Rohrbach, Biophys. J. 105, 1171 (2013).
[CrossRef]

2012 (1)

2011 (1)

2009 (1)

2008 (2)

2007 (2)

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, Micron 38, 150 (2007).
[CrossRef]

S. Kim, P. C. Blainey, C. M. Schroeder, and X. S. Xie, Nat. Methods 4, 397 (2007).
[CrossRef]

2001 (1)

1981 (1)

D. Axelrod, J. Cell Biol. 89, 141 (1981).
[CrossRef]

Ali, B. M. J.

Amit, R.

Ash, W. M.

Axelrod, D.

D. Axelrod, J. Cell Biol. 89, 141 (1981).
[CrossRef]

Beck, M.

Blainey, P. C.

S. Kim, P. C. Blainey, C. M. Schroeder, and X. S. Xie, Nat. Methods 4, 397 (2007).
[CrossRef]

Boss, D.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, Nat. Photonics 7, 113 (2013).
[CrossRef]

Braslavsky, I.

Choi, W.

Choi, Y.

Chowdhury, S.

Cotte, Y.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, Nat. Photonics 7, 113 (2013).
[CrossRef]

Dasari, R. R.

Defeu Soufo, H. J.

P. von Olshausen, H. J. Defeu Soufo, K. Wicker, R. Heintzmann, P. L. Graumann, and A. Rohrbach, Biophys. J. 105, 1171 (2013).
[CrossRef]

Depeursinge, C.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, Nat. Photonics 7, 113 (2013).
[CrossRef]

Dhalla, A.-H.

Fang-Yen, C.

Feld, M. S.

Fiolka, R.

Gileadi, O.

Graumann, P. L.

P. von Olshausen, H. J. Defeu Soufo, K. Wicker, R. Heintzmann, P. L. Graumann, and A. Rohrbach, Biophys. J. 105, 1171 (2013).
[CrossRef]

Heckenberg, N.

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, Micron 38, 150 (2007).
[CrossRef]

Heintzmann, R.

P. von Olshausen, H. J. Defeu Soufo, K. Wicker, R. Heintzmann, P. L. Graumann, and A. Rohrbach, Biophys. J. 105, 1171 (2013).
[CrossRef]

Izatt, J.

Jourdain, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, Nat. Photonics 7, 113 (2013).
[CrossRef]

Kim, M.

Kim, M. K.

Kim, S.

S. Kim, P. C. Blainey, C. M. Schroeder, and X. S. Xie, Nat. Methods 4, 397 (2007).
[CrossRef]

Lai, K.

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, Micron 38, 150 (2007).
[CrossRef]

Littleton, B.

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, Micron 38, 150 (2007).
[CrossRef]

Longstaff, D.

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, Micron 38, 150 (2007).
[CrossRef]

Magistretti, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, Nat. Photonics 7, 113 (2013).
[CrossRef]

Marquet, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, Nat. Photonics 7, 113 (2013).
[CrossRef]

Munroe, P.

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, Micron 38, 150 (2007).
[CrossRef]

Oppenheim, A.

Pavillon, N.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, Nat. Photonics 7, 113 (2013).
[CrossRef]

Rohrbach, A.

P. von Olshausen, H. J. Defeu Soufo, K. Wicker, R. Heintzmann, P. L. Graumann, and A. Rohrbach, Biophys. J. 105, 1171 (2013).
[CrossRef]

A. Rohrbach, Opt. Lett. 34, 3041 (2009).
[CrossRef]

Rubinsztein-Dunlop, H.

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, Micron 38, 150 (2007).
[CrossRef]

Sarafis, V.

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, Micron 38, 150 (2007).
[CrossRef]

Schroeder, C. M.

S. Kim, P. C. Blainey, C. M. Schroeder, and X. S. Xie, Nat. Methods 4, 397 (2007).
[CrossRef]

Stavans, J.

Stemmer, A.

Sung, Y.

Toy, F.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, Nat. Photonics 7, 113 (2013).
[CrossRef]

von Olshausen, P.

P. von Olshausen, H. J. Defeu Soufo, K. Wicker, R. Heintzmann, P. L. Graumann, and A. Rohrbach, Biophys. J. 105, 1171 (2013).
[CrossRef]

Wicker, K.

P. von Olshausen, H. J. Defeu Soufo, K. Wicker, R. Heintzmann, P. L. Graumann, and A. Rohrbach, Biophys. J. 105, 1171 (2013).
[CrossRef]

Xie, X. S.

S. Kim, P. C. Blainey, C. M. Schroeder, and X. S. Xie, Nat. Methods 4, 397 (2007).
[CrossRef]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Biophys. J. (1)

P. von Olshausen, H. J. Defeu Soufo, K. Wicker, R. Heintzmann, P. L. Graumann, and A. Rohrbach, Biophys. J. 105, 1171 (2013).
[CrossRef]

J. Cell Biol. (1)

D. Axelrod, J. Cell Biol. 89, 141 (1981).
[CrossRef]

Micron (1)

B. Littleton, K. Lai, D. Longstaff, V. Sarafis, P. Munroe, N. Heckenberg, and H. Rubinsztein-Dunlop, Micron 38, 150 (2007).
[CrossRef]

Nat. Methods (1)

S. Kim, P. C. Blainey, C. M. Schroeder, and X. S. Xie, Nat. Methods 4, 397 (2007).
[CrossRef]

Nat. Photonics (1)

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, Nat. Photonics 7, 113 (2013).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Scheme of the experimental setup.

Fig. 2.
Fig. 2.

Coherent partial images of 190 nm beads with evanescent wave illumination from different directions, (a) 5°, (b) 20°, and (c) 110°. The insets illustrate the formation of a coherent image of two point scatterers as in ROI 1. (d) Magnified view on the ROIs 1 and 2, including the final TIR-DF image. Scale bar is 1 μm.

Fig. 3.
Fig. 3.

190 nm beads imaged by (a) TIR-DF and (b) TIRF microscopy. Scale bar is 1 μm. (c) and (d) Magnified view of the green-framed ROI in (a) and (b), respectively. (e) and (f) Numerical simulation of TIR-DF and TIRF imaging, respectively, of the bead distribution as in the ROI. (g) and (h) Line profiles as marked in subfigures (a) and (b).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Ifinal(r)=1Nm=1N|f(r)·Em(r,ϕm)hc(r)|2.
Ifinal(r)=1Nm=1N|[jfj(r)]·Em(r,ϕm)hc(r)|2=1Nm=1N|j((fj(r)·Em(r,ϕm))hc(r))Fm,j(r,ϕm)|2,
Ifinal=1Nm=1N[j|Fm,j|2+jk2|Fm,j|2·|Fm,k|2·cos(φm,jφm,k)].
Ifinal=j|Fj|2+2Njk|Fj|2·|Fk|2·m=1Ncos(φm,jφm,k)Δφmjk.
ITIRF(r)=|FT1{F˜I(k)·HI(k)}|,
ITIRDF(r)=1Nm=1N|FT1{F˜C(k)·HC(k+km)}|2,

Metrics