Abstract

We experimentally demonstrate an ultracompact (3.7 μm long) hybrid plasmonic polarization rotator operating around 1.55 μm for integrated silicon photonics circuits. The TM polarization of a silicon waveguide is rotated to the TE polarization with insertion losses as low as 1.5 dB and polarization extinction ratios larger than 13.5 dB.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lipson, J. Lightwave Technol. 23, 4222 (2005).
    [CrossRef]
  2. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007).
    [CrossRef]
  3. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, Opt. Express 16, 4872 (2008).
    [CrossRef]
  4. A. V. Velasco, M. L. Calvo, P. Cheben, A. Moñux, J. H. Schmid, C. A. Ramos, I. M. Fernandez, J. Lapointe, M. Vachon, S. Janz, and D.-X. Xu, Opt. Lett. 37, 365 (2012).
    [CrossRef]
  5. L. Chen, C. R. Doerr, and Y.-K. Chen, Opt. Lett. 36, 469 (2011).
    [CrossRef]
  6. H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G.-Q. Lo, and J. T. L. Thong, Appl. Phys. Lett. 101, 021105 (2012).
    [CrossRef]
  7. Y. Ding, H. Ou, and C. Peucheret, Opt. Lett. 38, 1227 (2013).
    [CrossRef]
  8. J. Zhang, S. Zhu, H. Zhang, S. Chen, G.-Q. Lo, and D.-L. Kwong, IEEE Photon. Technol. Lett. 23, 1606 (2011).
    [CrossRef]
  9. M. Komatsu, K. Saitoh, and M. Koshiba, IEEE Photon. J. 4, 707 (2012).
    [CrossRef]
  10. J. N. Caspers, M. Z. Alam, and M. Mojahedi, Opt. Lett. 37, 4615 (2012).
    [CrossRef]
  11. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Super mode propagation in low index medium,” presented at Conference on Lasers and Electro-Optics, Baltimore, Maryland, May6, 2007, p. JThD112.
  12. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, Opt. Express 18, 12971 (2010).
    [CrossRef]
  13. M. Alam, J. S. Aitchison, and M. Mojahedi, Appl. Opt. 50, 2294 (2011).
    [CrossRef]
  14. M. Z. Alam, J. S. Aitchison, and M. Mojahedi, Opt. Lett. 37, 3417 (2012).
    [CrossRef]
  15. F. Lou, D. Dai, and L. Wosinski, Opt. Lett. 37, 3372 (2012).
    [CrossRef]
  16. X. Sun, M. Z. Alam, S. J. Wagner, J. S. Aitchison, and M. Mojahedi, Opt. Lett. 37, 4814 (2012).
    [CrossRef]
  17. J. Chee, S. Zhu, and G. Q. Lo, Opt. Express 20, 25345 (2012).
    [CrossRef]
  18. Lumerical FDTD, www.lumerical.com .

2013

2012

2011

J. Zhang, S. Zhu, H. Zhang, S. Chen, G.-Q. Lo, and D.-L. Kwong, IEEE Photon. Technol. Lett. 23, 1606 (2011).
[CrossRef]

L. Chen, C. R. Doerr, and Y.-K. Chen, Opt. Lett. 36, 469 (2011).
[CrossRef]

M. Alam, J. S. Aitchison, and M. Mojahedi, Appl. Opt. 50, 2294 (2011).
[CrossRef]

2010

2008

2007

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007).
[CrossRef]

2005

Aitchison, J. S.

Alam, M.

Alam, M. Z.

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007).
[CrossRef]

Calvo, M. L.

Caspers, J. N.

Cheben, P.

Chee, J.

Chen, L.

Chen, S.

H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G.-Q. Lo, and J. T. L. Thong, Appl. Phys. Lett. 101, 021105 (2012).
[CrossRef]

J. Zhang, S. Zhu, H. Zhang, S. Chen, G.-Q. Lo, and D.-L. Kwong, IEEE Photon. Technol. Lett. 23, 1606 (2011).
[CrossRef]

Chen, Y.-K.

Dai, D.

Das, S.

H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G.-Q. Lo, and J. T. L. Thong, Appl. Phys. Lett. 101, 021105 (2012).
[CrossRef]

Ding, Y.

Doerr, C. R.

Fernandez, I. M.

Fukuda, H.

Huang, Y.

H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G.-Q. Lo, and J. T. L. Thong, Appl. Phys. Lett. 101, 021105 (2012).
[CrossRef]

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007).
[CrossRef]

Itabashi, S.

Janz, S.

Kartner, F. X.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007).
[CrossRef]

Komatsu, M.

M. Komatsu, K. Saitoh, and M. Koshiba, IEEE Photon. J. 4, 707 (2012).
[CrossRef]

Koshiba, M.

M. Komatsu, K. Saitoh, and M. Koshiba, IEEE Photon. J. 4, 707 (2012).
[CrossRef]

Kwong, D.-L.

J. Zhang, S. Zhu, H. Zhang, S. Chen, G.-Q. Lo, and D.-L. Kwong, IEEE Photon. Technol. Lett. 23, 1606 (2011).
[CrossRef]

Lapointe, J.

Li, C.

H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G.-Q. Lo, and J. T. L. Thong, Appl. Phys. Lett. 101, 021105 (2012).
[CrossRef]

Lipson, M.

Lo, G. Q.

Lo, G.-Q.

J. Zhang, S. Zhu, H. Zhang, S. Chen, G.-Q. Lo, and D.-L. Kwong, IEEE Photon. Technol. Lett. 23, 1606 (2011).
[CrossRef]

Lo, P. G.-Q.

H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G.-Q. Lo, and J. T. L. Thong, Appl. Phys. Lett. 101, 021105 (2012).
[CrossRef]

Lou, F.

Meier, J.

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, Opt. Express 18, 12971 (2010).
[CrossRef]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Super mode propagation in low index medium,” presented at Conference on Lasers and Electro-Optics, Baltimore, Maryland, May6, 2007, p. JThD112.

Mojahedi, M.

Moñux, A.

Ou, H.

Peucheret, C.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007).
[CrossRef]

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007).
[CrossRef]

Ramos, C. A.

Saitoh, K.

M. Komatsu, K. Saitoh, and M. Koshiba, IEEE Photon. J. 4, 707 (2012).
[CrossRef]

Schmid, J. H.

Shinojima, H.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007).
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007).
[CrossRef]

Sun, X.

Thong, J. T. L.

H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G.-Q. Lo, and J. T. L. Thong, Appl. Phys. Lett. 101, 021105 (2012).
[CrossRef]

Tsuchizawa, T.

Vachon, M.

Velasco, A. V.

Wagner, S. J.

Watanabe, T.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007).
[CrossRef]

Wosinski, L.

Xu, D.-X.

Yamada, K.

Yu, M.

H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G.-Q. Lo, and J. T. L. Thong, Appl. Phys. Lett. 101, 021105 (2012).
[CrossRef]

Zhang, H.

H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G.-Q. Lo, and J. T. L. Thong, Appl. Phys. Lett. 101, 021105 (2012).
[CrossRef]

J. Zhang, S. Zhu, H. Zhang, S. Chen, G.-Q. Lo, and D.-L. Kwong, IEEE Photon. Technol. Lett. 23, 1606 (2011).
[CrossRef]

Zhang, J.

H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G.-Q. Lo, and J. T. L. Thong, Appl. Phys. Lett. 101, 021105 (2012).
[CrossRef]

J. Zhang, S. Zhu, H. Zhang, S. Chen, G.-Q. Lo, and D.-L. Kwong, IEEE Photon. Technol. Lett. 23, 1606 (2011).
[CrossRef]

Zhou, H.

H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G.-Q. Lo, and J. T. L. Thong, Appl. Phys. Lett. 101, 021105 (2012).
[CrossRef]

Zhu, S.

J. Chee, S. Zhu, and G. Q. Lo, Opt. Express 20, 25345 (2012).
[CrossRef]

J. Zhang, S. Zhu, H. Zhang, S. Chen, G.-Q. Lo, and D.-L. Kwong, IEEE Photon. Technol. Lett. 23, 1606 (2011).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

H. Zhang, S. Das, J. Zhang, Y. Huang, C. Li, S. Chen, H. Zhou, M. Yu, P. G.-Q. Lo, and J. T. L. Thong, Appl. Phys. Lett. 101, 021105 (2012).
[CrossRef]

IEEE Photon. J.

M. Komatsu, K. Saitoh, and M. Koshiba, IEEE Photon. J. 4, 707 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Zhang, S. Zhu, H. Zhang, S. Chen, G.-Q. Lo, and D.-L. Kwong, IEEE Photon. Technol. Lett. 23, 1606 (2011).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, Nat. Photonics 1, 57 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Other

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Super mode propagation in low index medium,” presented at Conference on Lasers and Electro-Optics, Baltimore, Maryland, May6, 2007, p. JThD112.

Lumerical FDTD, www.lumerical.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic top view of the fabricated device. The three sections (input taper, rotation section, and output taper) are indicated with dashed lines. (b) 3D schematics (not to scale) of the rotator indicating the input and output polarization states. Green corresponds to silicon and grey to silver. The silica spacer is not shown for clarity. (c) SEM picture of one of the finished rotators before the final top cladding is deposited. This device has a length of 5 μm. The silver is visible to be first on top of the waveguide and at the end of the rotator only on the side.

Fig. 2.
Fig. 2.

Simulated device insertion loss and polarization extinction ratio as a function of the rotation section length for different spacer thickness. The symbols represent the FDTD results, while the lines are guide to the eye. The dashed lines indicated the three regions: (I) nonadiabatic; (II) optimal conversion; (III) high metal loss.

Fig. 3.
Fig. 3.

(a) Schematic of the linear setup used to characterize the HP polarization rotator. (b) Polarization extinction ratio (red curve) and insertion loss (blue curve) spectrum for a rotation section length of 3.7 μm and a spacer thickness of 140 nm.

Fig. 4.
Fig. 4.

Polarization extinction ratio (top) and insertion loss (bottom) as a function of the rotation-section length measured at a wavelength of 1550 nm. The boxes are the data points, while the curves are FDTD simulations. We fabricated a number of rotators with the same length resulting in a number of data points for each length. The error bars give the uncertainty due to the normalization.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T = 2 P TM TE Rot P TM WG + P TE WG .
PER = P TM TM Rot P TM TE Rot · P TM WG + P TE WG 2 · P TM WG ,

Metrics