Abstract

We demonstrate optical parametric amplification in ZnGeP2 (ZGP) of the radiation emitted by a single-frequency continuous-wave quantum cascade laser (QCL) in the range 7.8–8.4 μm. The ZGP amplifier is pumped by a single-frequency parametric source at 2210 nm. For a pump energy of 6 mJ, we report an average gain of 50 over this range and a maximum gain of 111 for 7.5 mJ. An exponential trend is observed when changing the pump energy, with very good agreement with theory. These features are of valuable interest for increasing the standoff detection range of hazardous chemicals and explosives by QCL-based backscattering spectroscopy systems.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Webber, M. Pushkarsky, and C. K. N. Patel, J. Appl. Phys. 97, 113101 (2005).
    [CrossRef]
  2. E. Holthoff, J. Bender, P. Pellegrino, and A. Fisher, Sensors 10, 1986 (2010).
    [CrossRef]
  3. F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Defreif, and F. Schnürer, Opt. Eng. 49, 111127 (2010).
    [CrossRef]
  4. C. K. N. Patel, Eur. J. Phys. Special Topics 153, 1 (2008).
    [CrossRef]
  5. G. Bloom, A. Grisard, E. Lallier, C. Larat, M. Carras, and X. Marcadet, Opt. Lett. 35, 505 (2010).
    [CrossRef]
  6. M. W. Haakestad, G. Arisholm, E. Lippert, S. Nicolas, G. Rustad, and K. Stenersen, Opt. Express 16, 14263 (2008).
    [CrossRef]
  7. J.-M. Melkonian, M. Raybaut, A. Godard, J. Petit, and M. Lefebvre, Proc. SPIE 8546, 854607 (2012).
    [CrossRef]
  8. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).
  9. S. Das, G. C. Bhar, S. Gangopadhyay, and C. Ghosh, Appl. Opt. 42, 4335 (2003).
  10. M. Raybaut, T. Schmid, A. Godard, A. K. Mohamed, M. Lefebvre, F. Marnas, P. Flamant, A. Bohman, P. Geiser, and P. Kaspersen, Opt. Lett. 34, 2069 (2009).
    [CrossRef]
  11. N. P. Barnes, K. E. Murray, M. G. Jani, P. G. Schunemann, and T. M. Pollak, J. Opt. Soc. Am. B 15, 232 (1998).
  12. W. J. Alford and A. V. Smith, J. Opt. Soc. Am. B 18, 524 (2001).
    [CrossRef]
  13. D. J. Armstrong, W. J. Alford, T. D. Raymond, A. V. Smith, and M. S. Bowers, J. Opt. Soc. Am. B 14, 460 (1997).
    [CrossRef]

2012

J.-M. Melkonian, M. Raybaut, A. Godard, J. Petit, and M. Lefebvre, Proc. SPIE 8546, 854607 (2012).
[CrossRef]

2010

E. Holthoff, J. Bender, P. Pellegrino, and A. Fisher, Sensors 10, 1986 (2010).
[CrossRef]

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Defreif, and F. Schnürer, Opt. Eng. 49, 111127 (2010).
[CrossRef]

G. Bloom, A. Grisard, E. Lallier, C. Larat, M. Carras, and X. Marcadet, Opt. Lett. 35, 505 (2010).
[CrossRef]

2009

2008

2005

M. E. Webber, M. Pushkarsky, and C. K. N. Patel, J. Appl. Phys. 97, 113101 (2005).
[CrossRef]

2003

2001

1998

1997

Aidam, R.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Defreif, and F. Schnürer, Opt. Eng. 49, 111127 (2010).
[CrossRef]

Alford, W. J.

Arisholm, G.

Armstrong, D. J.

Barnes, N. P.

Bender, J.

E. Holthoff, J. Bender, P. Pellegrino, and A. Fisher, Sensors 10, 1986 (2010).
[CrossRef]

Bhar, G. C.

Bloom, G.

Bohman, A.

Bowers, M. S.

Bronner, W.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Defreif, and F. Schnürer, Opt. Eng. 49, 111127 (2010).
[CrossRef]

Carras, M.

Das, S.

Defreif, K.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Defreif, and F. Schnürer, Opt. Eng. 49, 111127 (2010).
[CrossRef]

Fisher, A.

E. Holthoff, J. Bender, P. Pellegrino, and A. Fisher, Sensors 10, 1986 (2010).
[CrossRef]

Flamant, P.

Fuchs, F.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Defreif, and F. Schnürer, Opt. Eng. 49, 111127 (2010).
[CrossRef]

Gangopadhyay, S.

Geiser, P.

Ghosh, C.

Godard, A.

Grisard, A.

Haakestad, M. W.

Holthoff, E.

E. Holthoff, J. Bender, P. Pellegrino, and A. Fisher, Sensors 10, 1986 (2010).
[CrossRef]

Hugger, S.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Defreif, and F. Schnürer, Opt. Eng. 49, 111127 (2010).
[CrossRef]

Jani, M. G.

Kaspersen, P.

Kinzer, M.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Defreif, and F. Schnürer, Opt. Eng. 49, 111127 (2010).
[CrossRef]

Lallier, E.

Larat, C.

Lefebvre, M.

Lippert, E.

Lösch, R.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Defreif, and F. Schnürer, Opt. Eng. 49, 111127 (2010).
[CrossRef]

Marcadet, X.

Marnas, F.

Melkonian, J.-M.

J.-M. Melkonian, M. Raybaut, A. Godard, J. Petit, and M. Lefebvre, Proc. SPIE 8546, 854607 (2012).
[CrossRef]

Mohamed, A. K.

Murray, K. E.

Nicolas, S.

Nikogosyan, D. N.

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

Patel, C. K. N.

C. K. N. Patel, Eur. J. Phys. Special Topics 153, 1 (2008).
[CrossRef]

M. E. Webber, M. Pushkarsky, and C. K. N. Patel, J. Appl. Phys. 97, 113101 (2005).
[CrossRef]

Pellegrino, P.

E. Holthoff, J. Bender, P. Pellegrino, and A. Fisher, Sensors 10, 1986 (2010).
[CrossRef]

Petit, J.

J.-M. Melkonian, M. Raybaut, A. Godard, J. Petit, and M. Lefebvre, Proc. SPIE 8546, 854607 (2012).
[CrossRef]

Pollak, T. M.

Pushkarsky, M.

M. E. Webber, M. Pushkarsky, and C. K. N. Patel, J. Appl. Phys. 97, 113101 (2005).
[CrossRef]

Raybaut, M.

Raymond, T. D.

Rustad, G.

Schmid, T.

Schnürer, F.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Defreif, and F. Schnürer, Opt. Eng. 49, 111127 (2010).
[CrossRef]

Schunemann, P. G.

Smith, A. V.

Stenersen, K.

Webber, M. E.

M. E. Webber, M. Pushkarsky, and C. K. N. Patel, J. Appl. Phys. 97, 113101 (2005).
[CrossRef]

Yang, Q.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Defreif, and F. Schnürer, Opt. Eng. 49, 111127 (2010).
[CrossRef]

Appl. Opt.

Eur. J. Phys. Special Topics

C. K. N. Patel, Eur. J. Phys. Special Topics 153, 1 (2008).
[CrossRef]

J. Appl. Phys.

M. E. Webber, M. Pushkarsky, and C. K. N. Patel, J. Appl. Phys. 97, 113101 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Eng.

F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Defreif, and F. Schnürer, Opt. Eng. 49, 111127 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

J.-M. Melkonian, M. Raybaut, A. Godard, J. Petit, and M. Lefebvre, Proc. SPIE 8546, 854607 (2012).
[CrossRef]

Sensors

E. Holthoff, J. Bender, P. Pellegrino, and A. Fisher, Sensors 10, 1986 (2010).
[CrossRef]

Other

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup of the parametric amplification experiment. The single-frequency pump and the QCL beams are overlapped in the type I ZGP crystal and the amplified beam in the range 7.66–8.44 μm is then collected by a detector after optical filtering.

Fig. 2.
Fig. 2.

Spatial profiles of the QCL and the pump beams at the location of the ZGP crystal. (a) QCL beam, M2<1.2, Gaussian profile with 1.3 mm waist. (b) Pump beam, M2<1.5, elliptic profile with a waist of 1.5×0.9mm (horizontal×vertical).

Fig. 3.
Fig. 3.

OPA gain at 8 μm versus effective pump energy for a 15-mm-long ZGP crystal (squares: experimental measurements; line: theoretical calculations without adjustable parameter).

Fig. 4.
Fig. 4.

Temporal profile of the amplified QCL radiation. The unamplified QCL power has been normalized to 1 so that the vertical axis is a direct measure of the gain.

Fig. 5.
Fig. 5.

Gain of the optical parametric amplifier versus QCL wavelength. The type I ZGP crystal was 15-mm-long, and the effective pump energy was 6 mJ.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

G=2πwQCL2exp(2x2+2y2wQCL2)cosh2(ΓL)dxdy,
Γ=[μ08ln2ωiωsd2Epcnpnsniπ32τpwhwvexp(4ln2t2τp22x2wh22y2wv2)]12.

Metrics