Abstract

We analyze possible mechanisms of switching in two-ports based on 2D photonic crystals (PhCs) with a magneto-optical resonator. The input and output waveguides can be side or front coupled with the resonator. The resonator operates with a dipole mode. In the switch with front coupling in the nonmagnetic state the standing dipole mode provides equal nonzero wave amplitudes in the input and output waveguides and therefore transmission of the signal from the input to output waveguides. This is the state on. The applied magnetic field normal to the plane of the PhC rotates the standing dipole mode by 90° setting the nodes in the input and output waveguides. This corresponds to the state off. On the contrary, in the switch with side coupling and nonmagnetized resonator, the standing dipole mode excited by a wave in the input waveguide has its node in the output waveguide. Therefore, the signal is reflected from the input port. This corresponds to the state off of the switch. Magnetization by a DC magnetic field produces a rotating dipole pattern in the cavity. Due to this rotating, the mode signal passes from the input port to the output one and this is the state on.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Yanik and S. Fan, Appl. Phys. Lett. 83, 2739 (2003).
    [CrossRef]
  2. A. Sharkawy, S. Shi, and D. W. Prather, Opt. Express 10, 1048 (2002).
    [CrossRef]
  3. D. M. Beggs, T. P. White, L. Cairns, L. O. Faolain, and T. F. Krauss, IEEE Photon. Technol. Lett. 21, 24 (2009).
    [CrossRef]
  4. Z. Wu, M. Levy, V. J. Fratello, and A. M. Merzlikin, Appl. Phys. Lett. 96, 051125 (2010).
    [CrossRef]
  5. V. Dmitriev, M. Kawakatsu, and G. Portela, Opt. Lett. 38, 1016 (2013).
    [CrossRef]
  6. V. Dmitriev, M. Kawakatsu, and F. J. M. de Souza, Opt. Lett. 37, 3192 (2012).
    [CrossRef]
  7. Z. Wang and S. Fan, Opt. Lett. 30, 1989 (2005).
    [CrossRef]
  8. W. Smigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, Opt. Lett. 35, 568 (2010).
    [CrossRef]
  9. Z. Wang and S. Fan, Photon. Nanostr. Fundam. Appl. 4, 132 (2006).
    [CrossRef]
  10. S.-H. Kim and Y.-H. Lee, IEEE J. Quantum Electron. 39, 1081 (2003).
    [CrossRef]
  11. Y. Xu, Y. Li, R. K. Lee, and A. Yariv, Phys. Rev. A 62, 7389 (2000).
  12. www.comsol.com .
  13. M. C. Sekhar, M. R. Singh, S. Basu, and S. Pinnepalli, Opt. Express 20, 9624 (2012).
    [CrossRef]
  14. E. L. Nagaev, Sov. Phys.-Usp. 18, 863 (1975).
    [CrossRef]

2013 (1)

2012 (2)

2010 (2)

Z. Wu, M. Levy, V. J. Fratello, and A. M. Merzlikin, Appl. Phys. Lett. 96, 051125 (2010).
[CrossRef]

W. Smigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, Opt. Lett. 35, 568 (2010).
[CrossRef]

2009 (1)

D. M. Beggs, T. P. White, L. Cairns, L. O. Faolain, and T. F. Krauss, IEEE Photon. Technol. Lett. 21, 24 (2009).
[CrossRef]

2006 (1)

Z. Wang and S. Fan, Photon. Nanostr. Fundam. Appl. 4, 132 (2006).
[CrossRef]

2005 (1)

2003 (2)

S.-H. Kim and Y.-H. Lee, IEEE J. Quantum Electron. 39, 1081 (2003).
[CrossRef]

M. Yanik and S. Fan, Appl. Phys. Lett. 83, 2739 (2003).
[CrossRef]

2002 (1)

2000 (1)

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, Phys. Rev. A 62, 7389 (2000).

1975 (1)

E. L. Nagaev, Sov. Phys.-Usp. 18, 863 (1975).
[CrossRef]

Basu, S.

Beggs, D. M.

D. M. Beggs, T. P. White, L. Cairns, L. O. Faolain, and T. F. Krauss, IEEE Photon. Technol. Lett. 21, 24 (2009).
[CrossRef]

Cairns, L.

D. M. Beggs, T. P. White, L. Cairns, L. O. Faolain, and T. F. Krauss, IEEE Photon. Technol. Lett. 21, 24 (2009).
[CrossRef]

Dagens, B.

de Souza, F. J. M.

Dmitriev, V.

Fan, S.

Z. Wang and S. Fan, Photon. Nanostr. Fundam. Appl. 4, 132 (2006).
[CrossRef]

Z. Wang and S. Fan, Opt. Lett. 30, 1989 (2005).
[CrossRef]

M. Yanik and S. Fan, Appl. Phys. Lett. 83, 2739 (2003).
[CrossRef]

Faolain, L. O.

D. M. Beggs, T. P. White, L. Cairns, L. O. Faolain, and T. F. Krauss, IEEE Photon. Technol. Lett. 21, 24 (2009).
[CrossRef]

Fratello, V. J.

Z. Wu, M. Levy, V. J. Fratello, and A. M. Merzlikin, Appl. Phys. Lett. 96, 051125 (2010).
[CrossRef]

Gralak, B.

Kawakatsu, M.

Kim, S.-H.

S.-H. Kim and Y.-H. Lee, IEEE J. Quantum Electron. 39, 1081 (2003).
[CrossRef]

Krauss, T. F.

D. M. Beggs, T. P. White, L. Cairns, L. O. Faolain, and T. F. Krauss, IEEE Photon. Technol. Lett. 21, 24 (2009).
[CrossRef]

Lee, R. K.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, Phys. Rev. A 62, 7389 (2000).

Lee, Y.-H.

S.-H. Kim and Y.-H. Lee, IEEE J. Quantum Electron. 39, 1081 (2003).
[CrossRef]

Levy, M.

Z. Wu, M. Levy, V. J. Fratello, and A. M. Merzlikin, Appl. Phys. Lett. 96, 051125 (2010).
[CrossRef]

Li, Y.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, Phys. Rev. A 62, 7389 (2000).

Magdenko, L.

Merzlikin, A. M.

Z. Wu, M. Levy, V. J. Fratello, and A. M. Merzlikin, Appl. Phys. Lett. 96, 051125 (2010).
[CrossRef]

Nagaev, E. L.

E. L. Nagaev, Sov. Phys.-Usp. 18, 863 (1975).
[CrossRef]

Pinnepalli, S.

Portela, G.

Prather, D. W.

Romero-Vivas, J.

Sekhar, M. C.

Sharkawy, A.

Shi, S.

Singh, M. R.

Smigaj, W.

Vanwolleghem, M.

Wang, Z.

Z. Wang and S. Fan, Photon. Nanostr. Fundam. Appl. 4, 132 (2006).
[CrossRef]

Z. Wang and S. Fan, Opt. Lett. 30, 1989 (2005).
[CrossRef]

White, T. P.

D. M. Beggs, T. P. White, L. Cairns, L. O. Faolain, and T. F. Krauss, IEEE Photon. Technol. Lett. 21, 24 (2009).
[CrossRef]

Wu, Z.

Z. Wu, M. Levy, V. J. Fratello, and A. M. Merzlikin, Appl. Phys. Lett. 96, 051125 (2010).
[CrossRef]

Xu, Y.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, Phys. Rev. A 62, 7389 (2000).

Yanik, M.

M. Yanik and S. Fan, Appl. Phys. Lett. 83, 2739 (2003).
[CrossRef]

Yariv, A.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, Phys. Rev. A 62, 7389 (2000).

Appl. Phys. Lett. (2)

Z. Wu, M. Levy, V. J. Fratello, and A. M. Merzlikin, Appl. Phys. Lett. 96, 051125 (2010).
[CrossRef]

M. Yanik and S. Fan, Appl. Phys. Lett. 83, 2739 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

S.-H. Kim and Y.-H. Lee, IEEE J. Quantum Electron. 39, 1081 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. M. Beggs, T. P. White, L. Cairns, L. O. Faolain, and T. F. Krauss, IEEE Photon. Technol. Lett. 21, 24 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Photon. Nanostr. Fundam. Appl. (1)

Z. Wang and S. Fan, Photon. Nanostr. Fundam. Appl. 4, 132 (2006).
[CrossRef]

Phys. Rev. A (1)

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, Phys. Rev. A 62, 7389 (2000).

Sov. Phys.-Usp. (1)

E. L. Nagaev, Sov. Phys.-Usp. 18, 863 (1975).
[CrossRef]

Other (1)

www.comsol.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Two-port switches: (a) and (b) front–front coupling of waveguides and resonator (case 1), (a) on state, (b) off state; (c) and (d) side–side coupling (case 2), (c) on state, (d) off state. Dotted hexagons enclose resonators, circles show Hz component of idealized dipole modes, H0 is DC magnetic field.

Fig. 2.
Fig. 2.

Eigenvectors for nonmagnetized and magnetized unloaded resonator: (a) dipole V1 oriented along x, (b) dipole V2 oriented along y, (c) two degenerate rotating dipoles V+ and V of nonmagnetic state, and (d) two nondegenerate rotating dipoles Vm+ and Vm of magnetic state. H0 is DC magnetic field.

Fig. 3.
Fig. 3.

Case 1. (a) Frequency splitting between right- and left-rotating modes of resonator versus tensor parameter g and (b) comparison of frequency characteristics of resonant modes for loaded (right inset) and unloaded (left inset) resonators in nonmagnetized and magnetized PhC.

Fig. 4.
Fig. 4.

Case 2. (a) Frequency splitting between right- and left-rotating modes of resonator versus tensor parameter g and (b) comparison of frequency characteristics of resonant modes for loaded (right inset) and unloaded (left inset) resonators in nonmagnetized and magnetized PhC.

Fig. 5.
Fig. 5.

Switch of Figs. 1(a) and 1(b). (a) Frequency responses. Hz distribution at central frequency: (b) state on and (c) state off.

Fig. 6.
Fig. 6.

Switch of Figs. 1(c) and 1(d). (a) Frequency responses. Hz distribution at central frequency: (b) state on (arc arrow shows rotation of dipole mode) and (c) state off.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V1=(10),V2=(01).
V+=(1i),V=(1i),
[ϵ]=ϵ0(ϵrig0igϵr000ϵr);μ=μ0.

Metrics