Abstract

A fiber in-line Mach–Zehnder interferometer is fabricated by selectively filling liquid into one air hole of the innermost layer of a photonic crystal fiber (PCF). The refractive index of the liquid is so close to that of the background silica in the wavelength range of 1300–1600 nm that the two-mode PCF evolves into multimode PCF with an elliptically shaped core. Due to the different propagation constants, interference can occur between the fundamental mode and higher-order modes of the liquid-filled PCF. Such a device is applied in temperature and strain measurements with high sensitivities of 16.49nm/°C and 14.595nm/N, respectively.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, Opt. Lett. 36, 3753 (2011).
    [CrossRef]
  2. Y. Wang, Y. H. Li, C. R. Liao, D. N. Wang, M. W. Yang, and P. X. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010).
    [CrossRef]
  3. C. R. Liao, D. N. Wang, and Y. Wang, Opt. Lett. 38, 757 (2013).
    [CrossRef]
  4. J. H. Wo, G. H. Wang, Y. Cui, Q. Z. Sun, R. B. Liang, P. P. Shum, and D. M. Liu, Opt. Lett. 37, 67 (2012).
    [CrossRef]
  5. M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, Opt. Commun. 284, 2849 (2011).
    [CrossRef]
  6. C. Wagner, J. Frankenberger, and P. P. Deimel, IEEE Photon. Technol. Lett. 5, 1257 (1993).
    [CrossRef]
  7. R. Yang, Y. S. Yu, X. Yang, C. Chen, Q. D. Chen, and H. B. Sun, Opt. Lett. 36, 4482 (2011).
    [CrossRef]
  8. Z. B. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, IEEE Photon. Technol. Lett. 20, 626 (2008).
    [CrossRef]
  9. M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, IEEE Photon. Technol. Lett. 21, 1027 (2009).
    [CrossRef]
  10. C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, IEEE Photon. Technol. Lett. 22, 1686 (2010).
    [CrossRef]
  11. Y. Jung, S. Lee, B. H. Lee, and K. Oh, Opt. Lett. 33, 2934 (2008).
    [CrossRef]
  12. L. C. Li, L. Xia, Z. H. Xie, and D. M. Liu, Opt. Express 20, 11109 (2012).
    [CrossRef]
  13. F. Wang, W. Yuan, O. Hansen, and O. Bang, Opt. Express 19, 17585 (2011).
    [CrossRef]
  14. M. Yang, D. N. Wang, Y. Wang, and C. R. Liao, Opt. Lett. 36, 636 (2011).
    [CrossRef]
  15. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, J. Lightwave Technol. 27, 1617 (2009).
    [CrossRef]
  16. W. Yuan, A. Stefani, and O. Bang, IEEE Photon. Technol. Lett. 24, 401 (2012).
    [CrossRef]

2013 (1)

2012 (3)

2011 (5)

2010 (2)

Y. Wang, Y. H. Li, C. R. Liao, D. N. Wang, M. W. Yang, and P. X. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010).
[CrossRef]

C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, IEEE Photon. Technol. Lett. 22, 1686 (2010).
[CrossRef]

2009 (2)

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, IEEE Photon. Technol. Lett. 21, 1027 (2009).
[CrossRef]

B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, J. Lightwave Technol. 27, 1617 (2009).
[CrossRef]

2008 (2)

Y. Jung, S. Lee, B. H. Lee, and K. Oh, Opt. Lett. 33, 2934 (2008).
[CrossRef]

Z. B. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, IEEE Photon. Technol. Lett. 20, 626 (2008).
[CrossRef]

1993 (1)

C. Wagner, J. Frankenberger, and P. P. Deimel, IEEE Photon. Technol. Lett. 5, 1257 (1993).
[CrossRef]

Bang, O.

W. Yuan, A. Stefani, and O. Bang, IEEE Photon. Technol. Lett. 24, 401 (2012).
[CrossRef]

F. Wang, W. Yuan, O. Hansen, and O. Bang, Opt. Express 19, 17585 (2011).
[CrossRef]

Barnes, J.

Z. B. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, IEEE Photon. Technol. Lett. 20, 626 (2008).
[CrossRef]

Bock, W.

Z. B. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, IEEE Photon. Technol. Lett. 20, 626 (2008).
[CrossRef]

Chen, C.

Chen, Q. D.

Cui, Y.

Deimel, P. P.

C. Wagner, J. Frankenberger, and P. P. Deimel, IEEE Photon. Technol. Lett. 5, 1257 (1993).
[CrossRef]

Deng, M.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, Opt. Commun. 284, 2849 (2011).
[CrossRef]

Eggleton, B. J.

Frankenberger, J.

C. Wagner, J. Frankenberger, and P. P. Deimel, IEEE Photon. Technol. Lett. 5, 1257 (1993).
[CrossRef]

Fraser, J. M.

Z. B. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, IEEE Photon. Technol. Lett. 20, 626 (2008).
[CrossRef]

Greig, P.

Z. B. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, IEEE Photon. Technol. Lett. 20, 626 (2008).
[CrossRef]

Ha, W.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, IEEE Photon. Technol. Lett. 21, 1027 (2009).
[CrossRef]

Hansen, O.

Jiang, L.

Jung, Y.

Kim, D. K.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, IEEE Photon. Technol. Lett. 21, 1027 (2009).
[CrossRef]

Kuhlmey, B. T.

Lee, B. H.

Lee, S.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, IEEE Photon. Technol. Lett. 21, 1027 (2009).
[CrossRef]

Y. Jung, S. Lee, B. H. Lee, and K. Oh, Opt. Lett. 33, 2934 (2008).
[CrossRef]

Li, B.

Li, L. C.

Li, Y. H.

Y. Wang, Y. H. Li, C. R. Liao, D. N. Wang, M. W. Yang, and P. X. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010).
[CrossRef]

Liang, R. B.

Liao, C. R.

C. R. Liao, D. N. Wang, and Y. Wang, Opt. Lett. 38, 757 (2013).
[CrossRef]

M. Yang, D. N. Wang, Y. Wang, and C. R. Liao, Opt. Lett. 36, 636 (2011).
[CrossRef]

C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, IEEE Photon. Technol. Lett. 22, 1686 (2010).
[CrossRef]

Y. Wang, Y. H. Li, C. R. Liao, D. N. Wang, M. W. Yang, and P. X. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010).
[CrossRef]

Liu, D. M.

Loock, H. P.

Z. B. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, IEEE Photon. Technol. Lett. 20, 626 (2008).
[CrossRef]

Lu, P. X.

Y. Wang, Y. H. Li, C. R. Liao, D. N. Wang, M. W. Yang, and P. X. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010).
[CrossRef]

Oh, K.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, IEEE Photon. Technol. Lett. 21, 1027 (2009).
[CrossRef]

Y. Jung, S. Lee, B. H. Lee, and K. Oh, Opt. Lett. 33, 2934 (2008).
[CrossRef]

Oleschuk, R. D.

Z. B. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, IEEE Photon. Technol. Lett. 20, 626 (2008).
[CrossRef]

Park, M.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, IEEE Photon. Technol. Lett. 21, 1027 (2009).
[CrossRef]

Rao, Y. J.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, Opt. Commun. 284, 2849 (2011).
[CrossRef]

Shin, W.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, IEEE Photon. Technol. Lett. 21, 1027 (2009).
[CrossRef]

Shum, P. P.

Sohn, I. B.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, IEEE Photon. Technol. Lett. 21, 1027 (2009).
[CrossRef]

Stefani, A.

W. Yuan, A. Stefani, and O. Bang, IEEE Photon. Technol. Lett. 24, 401 (2012).
[CrossRef]

Sun, H. B.

Sun, Q. Z.

Tang, C. P.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, Opt. Commun. 284, 2849 (2011).
[CrossRef]

Tian, Z. B.

Z. B. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, IEEE Photon. Technol. Lett. 20, 626 (2008).
[CrossRef]

Wagner, C.

C. Wagner, J. Frankenberger, and P. P. Deimel, IEEE Photon. Technol. Lett. 5, 1257 (1993).
[CrossRef]

Wang, D. N.

C. R. Liao, D. N. Wang, and Y. Wang, Opt. Lett. 38, 757 (2013).
[CrossRef]

M. Yang, D. N. Wang, Y. Wang, and C. R. Liao, Opt. Lett. 36, 636 (2011).
[CrossRef]

C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, IEEE Photon. Technol. Lett. 22, 1686 (2010).
[CrossRef]

Y. Wang, Y. H. Li, C. R. Liao, D. N. Wang, M. W. Yang, and P. X. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010).
[CrossRef]

Wang, F.

Wang, G. H.

Wang, M.

Wang, S.

Wang, Y.

C. R. Liao, D. N. Wang, and Y. Wang, Opt. Lett. 38, 757 (2013).
[CrossRef]

M. Yang, D. N. Wang, Y. Wang, and C. R. Liao, Opt. Lett. 36, 636 (2011).
[CrossRef]

C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, IEEE Photon. Technol. Lett. 22, 1686 (2010).
[CrossRef]

Y. Wang, Y. H. Li, C. R. Liao, D. N. Wang, M. W. Yang, and P. X. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010).
[CrossRef]

Wo, J. H.

Wu, D. K. C.

Xia, L.

Xie, Z. H.

Yam, S. S.-H.

Z. B. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, IEEE Photon. Technol. Lett. 20, 626 (2008).
[CrossRef]

Yang, J.

Yang, M.

Yang, M. W.

C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, IEEE Photon. Technol. Lett. 22, 1686 (2010).
[CrossRef]

Y. Wang, Y. H. Li, C. R. Liao, D. N. Wang, M. W. Yang, and P. X. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010).
[CrossRef]

Yang, R.

Yang, X.

Yu, Y. S.

Yuan, W.

W. Yuan, A. Stefani, and O. Bang, IEEE Photon. Technol. Lett. 24, 401 (2012).
[CrossRef]

F. Wang, W. Yuan, O. Hansen, and O. Bang, Opt. Express 19, 17585 (2011).
[CrossRef]

Zhu, T.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, Opt. Commun. 284, 2849 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

Y. Wang, Y. H. Li, C. R. Liao, D. N. Wang, M. W. Yang, and P. X. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010).
[CrossRef]

Z. B. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, IEEE Photon. Technol. Lett. 20, 626 (2008).
[CrossRef]

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, IEEE Photon. Technol. Lett. 21, 1027 (2009).
[CrossRef]

C. R. Liao, Y. Wang, D. N. Wang, and M. W. Yang, IEEE Photon. Technol. Lett. 22, 1686 (2010).
[CrossRef]

C. Wagner, J. Frankenberger, and P. P. Deimel, IEEE Photon. Technol. Lett. 5, 1257 (1993).
[CrossRef]

W. Yuan, A. Stefani, and O. Bang, IEEE Photon. Technol. Lett. 24, 401 (2012).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (1)

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, Opt. Commun. 284, 2849 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lett. (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Cross-sectional images of (a) the unfilled PCFs and (b) the liquid-filled PCFs. (c) Schematic diagram of the experimental setup.

Fig. 2.
Fig. 2.

Simulation of the first six mode fields of the near-elliptic core PCF; only the x-polarization state is plotted. (a) The fundamental mode and (b)–(f) the higher-order modes.

Fig. 3.
Fig. 3.

Dispersion curves for different modes shown in Fig. 2. The insets are the mode field distributions of the fundamental mode at wavelengths of 1300, 1450, and 1600 nm, respectively.

Fig. 4.
Fig. 4.

Transmission spectrum of the near-elliptic core PCF with different liquid-filled lengths.

Fig. 5.
Fig. 5.

Spatial frequency spectrum of the MZI with liquid-filled length of 2.5 cm.

Fig. 6.
Fig. 6.

Fringe wavelength shifts for different liquid-filled lengths. Squares, 4.1 cm; circles, 1.8 cm; triangles, 2.5 cm; lines, linear fitted.

Fig. 7.
Fig. 7.

Simulated thermo coefficients of the modes shown in Fig. 2. Lines, linear fit of the simulation results.

Fig. 8.
Fig. 8.

Wavelength shift of the fringe dip around 1520 nm of the MZI as the load varies. The inset represents the variation of the fringe dip as the load increases.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

dλdT=λneff1neff2(dneff1dTdneff2dT),
[ΔTΔε]=[12.3613.30916.4914.595]1[ΔλAΔλB],

Metrics