Abstract

We report on an integrated λ/4-shifted Bragg grating array using a wafer-scale complementary metal-oxide semiconductor (CMOS) compatible process with silicon–nitride waveguides. A sidewall grating was used to simplify the fabrication process, and a sampled Bragg grating with equivalent phase-shift structure was employed to achieve an accurate λ/4 phase shift. A four-channel λ/4-shifted Bragg grating array with highly uniform channel spacing was demonstrated with a measured channel spacing variation below 10 pm (1.25 GHz). The high channel-spacing uniformity and the CMOS-compatibility of the demonstrated device hold promise for integrated distributed feedback laser arrays for various silicon photonic applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
    [CrossRef]
  2. E. H. Bernhardi, H. A. G. M. van Wolferen, L. Agazzi, M. R. H. Khan, C. G. H. Roeloffzen, K. Wörhoff, M. Pollnau, and R. M. de Ridder, Opt. Lett. 35, 2394 (2010).
    [CrossRef]
  3. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, Opt. Express 14, 9203 (2006).
    [CrossRef]
  4. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. Hosseini, and M. R. Watts, Opt. Lett. 38, 1760 (2013).
    [CrossRef]
  5. K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, IEEE J. Quantum Electron. 22, 1042 (1986).
    [CrossRef]
  6. A. W. Fang, E. Lively, Y. H. Kuo, D. Liang, and J. E. Bowers, Opt. Express 16, 4413 (2008).
    [CrossRef]
  7. Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, IEEE Photon. Technol. Lett. 16, 2284 (2004).
    [CrossRef]
  8. J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, IEEE Photon. Technol. Lett. 18, 2493 (2006).
    [CrossRef]
  9. Y. Shi, X. Chen, Y. Zhou, S. Li, L. Lu, R. Liu, and Y. Feng, Opt. Lett. 37, 3315 (2012).
    [CrossRef]
  10. J. Sun, C. W. Holzwarth, and H. I. Smith, IEEE Photon. Technol. Lett. 24, 25 (2012).
    [CrossRef]
  11. V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, IEEE J. Quantum Electron. 29, 1824 (1993).
    [CrossRef]
  12. M. Belt, J. Bovington, R. Moreira, J. F. Bauters, M. J. R. Heck, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, Opt. Express 21, 1181 (2013).
    [CrossRef]

2013

2012

Y. Shi, X. Chen, Y. Zhou, S. Li, L. Lu, R. Liu, and Y. Feng, Opt. Lett. 37, 3315 (2012).
[CrossRef]

J. Sun, C. W. Holzwarth, and H. I. Smith, IEEE Photon. Technol. Lett. 24, 25 (2012).
[CrossRef]

2010

2008

2006

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, Opt. Express 14, 9203 (2006).
[CrossRef]

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, IEEE Photon. Technol. Lett. 18, 2493 (2006).
[CrossRef]

2004

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, IEEE Photon. Technol. Lett. 16, 2284 (2004).
[CrossRef]

1993

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, IEEE J. Quantum Electron. 29, 1824 (1993).
[CrossRef]

1986

K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, IEEE J. Quantum Electron. 22, 1042 (1986).
[CrossRef]

Adam, T. N.

Agazzi, L.

Akiba, S.

K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, IEEE J. Quantum Electron. 22, 1042 (1986).
[CrossRef]

Barton, J. S.

Bauters, J. F.

Belt, M.

Bernhardi, E. H.

Blumenthal, D. J.

Bovington, J.

Bowers, J. E.

Bradley, J. D. B.

Chen, X.

Y. Shi, X. Chen, Y. Zhou, S. Li, L. Lu, R. Liu, and Y. Feng, Opt. Lett. 37, 3315 (2012).
[CrossRef]

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, IEEE Photon. Technol. Lett. 18, 2493 (2006).
[CrossRef]

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, IEEE Photon. Technol. Lett. 16, 2284 (2004).
[CrossRef]

Chuang, Z.-M.

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, IEEE J. Quantum Electron. 29, 1824 (1993).
[CrossRef]

Cohen, O.

Coldren, L. A.

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, IEEE J. Quantum Electron. 29, 1824 (1993).
[CrossRef]

Coolbaugh, D.

Dai, Y.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, IEEE Photon. Technol. Lett. 18, 2493 (2006).
[CrossRef]

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, IEEE Photon. Technol. Lett. 16, 2284 (2004).
[CrossRef]

de Ridder, R. M.

Fan, C.

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, IEEE Photon. Technol. Lett. 16, 2284 (2004).
[CrossRef]

Fang, A. W.

Feng, Y.

Heck, M. J. R.

Holzwarth, C. W.

J. Sun, C. W. Holzwarth, and H. I. Smith, IEEE Photon. Technol. Lett. 24, 25 (2012).
[CrossRef]

Hosseini, E.

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[CrossRef]

Jayaraman, V.

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, IEEE J. Quantum Electron. 29, 1824 (1993).
[CrossRef]

Jiang, D.

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, IEEE Photon. Technol. Lett. 16, 2284 (2004).
[CrossRef]

Jones, R.

Khan, M. R. H.

Kuo, Y. H.

Leake, G.

Li, S.

Liang, D.

Liu, R.

Lively, E.

Lu, L.

Matsushima, Y.

K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, IEEE J. Quantum Electron. 22, 1042 (1986).
[CrossRef]

Moreira, R.

Paniccia, M. J.

Park, H.

Pollnau, M.

Purnawirman,

Roeloffzen, C. G. H.

Sakai, K.

K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, IEEE J. Quantum Electron. 22, 1042 (1986).
[CrossRef]

Shi, Y.

Smith, H. I.

J. Sun, C. W. Holzwarth, and H. I. Smith, IEEE Photon. Technol. Lett. 24, 25 (2012).
[CrossRef]

Sun, J.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[CrossRef]

Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. Hosseini, and M. R. Watts, Opt. Lett. 38, 1760 (2013).
[CrossRef]

J. Sun, C. W. Holzwarth, and H. I. Smith, IEEE Photon. Technol. Lett. 24, 25 (2012).
[CrossRef]

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, IEEE Photon. Technol. Lett. 18, 2493 (2006).
[CrossRef]

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[CrossRef]

Utaka, K.

K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, IEEE J. Quantum Electron. 22, 1042 (1986).
[CrossRef]

van Wolferen, H. A. G. M.

Watts, M. R.

Wörhoff, K.

Xie, S.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, IEEE Photon. Technol. Lett. 18, 2493 (2006).
[CrossRef]

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, IEEE Photon. Technol. Lett. 16, 2284 (2004).
[CrossRef]

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[CrossRef]

Zhang, Y.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, IEEE Photon. Technol. Lett. 18, 2493 (2006).
[CrossRef]

Zhou, Y.

IEEE J. Quantum Electron.

K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, IEEE J. Quantum Electron. 22, 1042 (1986).
[CrossRef]

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, IEEE J. Quantum Electron. 29, 1824 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Sun, C. W. Holzwarth, and H. I. Smith, IEEE Photon. Technol. Lett. 24, 25 (2012).
[CrossRef]

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, IEEE Photon. Technol. Lett. 16, 2284 (2004).
[CrossRef]

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, IEEE Photon. Technol. Lett. 18, 2493 (2006).
[CrossRef]

Nature

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, Nature 493, 195 (2013).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of the four-channel λ/4-shifted Bragg grating array with equivalent phase shift. (b) An illustration of the equivalent phase-shift method. (c) The cross section and the simulated mode profile of the waveguide structure.

Fig. 2.
Fig. 2.

(a) Simulated transmission spectrum of a typical sampled Bragg grating with a phase shift in the sampling function. Inset: a close-up view of the 1st resonant order showing a quarter-wave phase-shift resonance in the center. (b) An example of a four-channel λ/4-shifted Bragg grating array with uniform channel spacing Δλch.

Fig. 3.
Fig. 3.

Scanning-electron micrographs of the fabricated sampled Bragg grating in a standard CMOS foundry using optical lithography. (a) The section with sidewall Bragg gratings when the sampling is on. (b) The section with pure waveguide when the sampling is off. (c) The transition section mixed with waveguide and Bragg gratings.

Fig. 4.
Fig. 4.

(a) Measured transmission spectra of the fabricated four-channel λ/4-shifted Bragg grating array. (b) The 1st resonant order of the transmission spectra. (c) A close-up view of the phase-shift resonance of channel 3. Dotted line: the fitted curve.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δλ=λ022ngP,
Δϕ=2πΔLP.
Δλch=λ022ng(1Pi1Pi+1),

Metrics