Abstract

We demonstrate the combination of a tunable lens and tunable aperture in a compact imaging system whose structure is inspired by the human eye. The concept is based on innovative optical materials and tuning mechanisms including an optofluidic iris for a tunable aperture and an elastomer lens for focal length tuning. Wavefront and modulation transfer function analysis reveals a high imaging performance of both the individual elements and the complete system. Most significantly, the wavefront is not degraded (ΔPV<λ/10) when tuning the focal length (Δf=5.36%).

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Mikš and J. Novák, Appl. Opt. 52, 862 (2013).
    [CrossRef]
  2. S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
    [CrossRef]
  3. J. Y. An, J. H. Hur, S. Kim, and J. H. Lee, IEEE Photon. Technol. Lett. 23, 1703 (2011).
    [CrossRef]
  4. I. Jung, J. Xiao, V. Malyarchuk, C. Lu, M. Li, Z. Liu, J. Yoon, Y. Huang, and J. A. Rogers, Proc. Natl. Acad. Sci. USA 108, 1788 (2011).
    [CrossRef]
  5. P. Liebetraut, S. Petsch, W. Mönch, and H. Zappe, Appl. Opt. 50, 3268 (2011).
    [CrossRef]
  6. S. Shian, R. M. Diebold, and D. R. Clarke, Opt. Express 21, 8669 (2013).
    [CrossRef]
  7. H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, Appl. Phys. Lett. 84, 4789 (2004).
    [CrossRef]
  8. F. Carpi, G. Frediani, S. Turco, and D. De Rossi, Adv. Funct. Mater. 21, 4152 (2011).
    [CrossRef]
  9. B.-k. Nguyen, E. Iwase, K. Matsumoto, and I. Shimoyama, in 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2007), pp. 305–308.
  10. C.-H. Kim, K.-d. Jung, and W. Kim, in 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems (IEEE, 2009), pp. 156–159.
  11. G. Zhou, H. Yu, Y. Du, and F. S. Chau, Opt. Lett. 37, 1745 (2012).
    [CrossRef]
  12. C. G. Tsai and J. A. Yeh, Opt. Lett. 35, 2484 (2010).
    [CrossRef]
  13. J. Draheim, T. Burger, J. G. Korvink, and U. Wallrabe, Opt. Lett. 36, 2032 (2011).
    [CrossRef]
  14. T. Deutschmann and E. Oesterschulze, J. Micromech. Microeng. 23, 065032 (2013).
    [CrossRef]
  15. L. Li, C. Liu, and Q.-h. Wang, IEEE Photon. Technol. Lett. 25, 989 (2013).
    [CrossRef]
  16. P. Muller, R. Feuerstein, and H. Zappe, J. Microelectromech. Syst. 21, 1156 (2012).
    [CrossRef]
  17. U. Levy and R. Shamai, Microfluid. Nanofluid. 4, 97 (2008).
    [CrossRef]
  18. P. Liebetraut, S. Petsch, and H. Zappe, in 2012 International Conference on Optical MEMS and Nanophotonics (IEEE, 2012), vol. 13, pp. 176–177.
  19. P. Liebetraut, S. Petsch, J. Liebeskind, and H. Zappe, Light Sci. Appl. 2, e98 (2013).
    [CrossRef]
  20. F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, Opt. Express 17, 11813 (2009).
    [CrossRef]

2013

T. Deutschmann and E. Oesterschulze, J. Micromech. Microeng. 23, 065032 (2013).
[CrossRef]

L. Li, C. Liu, and Q.-h. Wang, IEEE Photon. Technol. Lett. 25, 989 (2013).
[CrossRef]

P. Liebetraut, S. Petsch, J. Liebeskind, and H. Zappe, Light Sci. Appl. 2, e98 (2013).
[CrossRef]

A. Mikš and J. Novák, Appl. Opt. 52, 862 (2013).
[CrossRef]

S. Shian, R. M. Diebold, and D. R. Clarke, Opt. Express 21, 8669 (2013).
[CrossRef]

2012

G. Zhou, H. Yu, Y. Du, and F. S. Chau, Opt. Lett. 37, 1745 (2012).
[CrossRef]

P. Muller, R. Feuerstein, and H. Zappe, J. Microelectromech. Syst. 21, 1156 (2012).
[CrossRef]

2011

J. Y. An, J. H. Hur, S. Kim, and J. H. Lee, IEEE Photon. Technol. Lett. 23, 1703 (2011).
[CrossRef]

I. Jung, J. Xiao, V. Malyarchuk, C. Lu, M. Li, Z. Liu, J. Yoon, Y. Huang, and J. A. Rogers, Proc. Natl. Acad. Sci. USA 108, 1788 (2011).
[CrossRef]

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, Adv. Funct. Mater. 21, 4152 (2011).
[CrossRef]

J. Draheim, T. Burger, J. G. Korvink, and U. Wallrabe, Opt. Lett. 36, 2032 (2011).
[CrossRef]

P. Liebetraut, S. Petsch, W. Mönch, and H. Zappe, Appl. Opt. 50, 3268 (2011).
[CrossRef]

2010

2009

2008

U. Levy and R. Shamai, Microfluid. Nanofluid. 4, 97 (2008).
[CrossRef]

2004

S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
[CrossRef]

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, Appl. Phys. Lett. 84, 4789 (2004).
[CrossRef]

An, J. Y.

J. Y. An, J. H. Hur, S. Kim, and J. H. Lee, IEEE Photon. Technol. Lett. 23, 1703 (2011).
[CrossRef]

Burger, T.

Carpi, F.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, Adv. Funct. Mater. 21, 4152 (2011).
[CrossRef]

Chau, F. S.

Clarke, D. R.

De Rossi, D.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, Adv. Funct. Mater. 21, 4152 (2011).
[CrossRef]

Deutschmann, T.

T. Deutschmann and E. Oesterschulze, J. Micromech. Microeng. 23, 065032 (2013).
[CrossRef]

Diebold, R. M.

Draheim, J.

Du, Y.

Fan, Y.-H.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, Appl. Phys. Lett. 84, 4789 (2004).
[CrossRef]

Feuerstein, R.

P. Muller, R. Feuerstein, and H. Zappe, J. Microelectromech. Syst. 21, 1156 (2012).
[CrossRef]

Frediani, G.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, Adv. Funct. Mater. 21, 4152 (2011).
[CrossRef]

Gauza, S.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, Appl. Phys. Lett. 84, 4789 (2004).
[CrossRef]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
[CrossRef]

Huang, Y.

I. Jung, J. Xiao, V. Malyarchuk, C. Lu, M. Li, Z. Liu, J. Yoon, Y. Huang, and J. A. Rogers, Proc. Natl. Acad. Sci. USA 108, 1788 (2011).
[CrossRef]

Hur, J. H.

J. Y. An, J. H. Hur, S. Kim, and J. H. Lee, IEEE Photon. Technol. Lett. 23, 1703 (2011).
[CrossRef]

Iwase, E.

B.-k. Nguyen, E. Iwase, K. Matsumoto, and I. Shimoyama, in 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2007), pp. 305–308.

Jung, I.

I. Jung, J. Xiao, V. Malyarchuk, C. Lu, M. Li, Z. Liu, J. Yoon, Y. Huang, and J. A. Rogers, Proc. Natl. Acad. Sci. USA 108, 1788 (2011).
[CrossRef]

Jung, K.-d.

C.-H. Kim, K.-d. Jung, and W. Kim, in 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems (IEEE, 2009), pp. 156–159.

Kamberger, R.

Kim, C.-H.

C.-H. Kim, K.-d. Jung, and W. Kim, in 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems (IEEE, 2009), pp. 156–159.

Kim, S.

J. Y. An, J. H. Hur, S. Kim, and J. H. Lee, IEEE Photon. Technol. Lett. 23, 1703 (2011).
[CrossRef]

Kim, W.

C.-H. Kim, K.-d. Jung, and W. Kim, in 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems (IEEE, 2009), pp. 156–159.

Korvink, J. G.

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
[CrossRef]

Lee, J. H.

J. Y. An, J. H. Hur, S. Kim, and J. H. Lee, IEEE Photon. Technol. Lett. 23, 1703 (2011).
[CrossRef]

Levy, U.

U. Levy and R. Shamai, Microfluid. Nanofluid. 4, 97 (2008).
[CrossRef]

Li, L.

L. Li, C. Liu, and Q.-h. Wang, IEEE Photon. Technol. Lett. 25, 989 (2013).
[CrossRef]

Li, M.

I. Jung, J. Xiao, V. Malyarchuk, C. Lu, M. Li, Z. Liu, J. Yoon, Y. Huang, and J. A. Rogers, Proc. Natl. Acad. Sci. USA 108, 1788 (2011).
[CrossRef]

Liebeskind, J.

P. Liebetraut, S. Petsch, J. Liebeskind, and H. Zappe, Light Sci. Appl. 2, e98 (2013).
[CrossRef]

Liebetraut, P.

P. Liebetraut, S. Petsch, J. Liebeskind, and H. Zappe, Light Sci. Appl. 2, e98 (2013).
[CrossRef]

P. Liebetraut, S. Petsch, W. Mönch, and H. Zappe, Appl. Opt. 50, 3268 (2011).
[CrossRef]

P. Liebetraut, S. Petsch, and H. Zappe, in 2012 International Conference on Optical MEMS and Nanophotonics (IEEE, 2012), vol. 13, pp. 176–177.

Liu, C.

L. Li, C. Liu, and Q.-h. Wang, IEEE Photon. Technol. Lett. 25, 989 (2013).
[CrossRef]

Liu, Z.

I. Jung, J. Xiao, V. Malyarchuk, C. Lu, M. Li, Z. Liu, J. Yoon, Y. Huang, and J. A. Rogers, Proc. Natl. Acad. Sci. USA 108, 1788 (2011).
[CrossRef]

Lu, C.

I. Jung, J. Xiao, V. Malyarchuk, C. Lu, M. Li, Z. Liu, J. Yoon, Y. Huang, and J. A. Rogers, Proc. Natl. Acad. Sci. USA 108, 1788 (2011).
[CrossRef]

Malyarchuk, V.

I. Jung, J. Xiao, V. Malyarchuk, C. Lu, M. Li, Z. Liu, J. Yoon, Y. Huang, and J. A. Rogers, Proc. Natl. Acad. Sci. USA 108, 1788 (2011).
[CrossRef]

Matsumoto, K.

B.-k. Nguyen, E. Iwase, K. Matsumoto, and I. Shimoyama, in 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2007), pp. 305–308.

Mikš, A.

Mönch, W.

Muller, P.

P. Muller, R. Feuerstein, and H. Zappe, J. Microelectromech. Syst. 21, 1156 (2012).
[CrossRef]

Nguyen, B.-k.

B.-k. Nguyen, E. Iwase, K. Matsumoto, and I. Shimoyama, in 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2007), pp. 305–308.

Novák, J.

Oesterschulze, E.

T. Deutschmann and E. Oesterschulze, J. Micromech. Microeng. 23, 065032 (2013).
[CrossRef]

Petsch, S.

P. Liebetraut, S. Petsch, J. Liebeskind, and H. Zappe, Light Sci. Appl. 2, e98 (2013).
[CrossRef]

P. Liebetraut, S. Petsch, W. Mönch, and H. Zappe, Appl. Opt. 50, 3268 (2011).
[CrossRef]

P. Liebetraut, S. Petsch, and H. Zappe, in 2012 International Conference on Optical MEMS and Nanophotonics (IEEE, 2012), vol. 13, pp. 176–177.

Ren, H.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, Appl. Phys. Lett. 84, 4789 (2004).
[CrossRef]

Rogers, J. A.

I. Jung, J. Xiao, V. Malyarchuk, C. Lu, M. Li, Z. Liu, J. Yoon, Y. Huang, and J. A. Rogers, Proc. Natl. Acad. Sci. USA 108, 1788 (2011).
[CrossRef]

Schneider, F.

Shamai, R.

U. Levy and R. Shamai, Microfluid. Nanofluid. 4, 97 (2008).
[CrossRef]

Shian, S.

Shimoyama, I.

B.-k. Nguyen, E. Iwase, K. Matsumoto, and I. Shimoyama, in 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2007), pp. 305–308.

Tsai, C. G.

Turco, S.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, Adv. Funct. Mater. 21, 4152 (2011).
[CrossRef]

Waibel, P.

Wallrabe, U.

Wang, Q.-h.

L. Li, C. Liu, and Q.-h. Wang, IEEE Photon. Technol. Lett. 25, 989 (2013).
[CrossRef]

Wu, S.-T.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, Appl. Phys. Lett. 84, 4789 (2004).
[CrossRef]

Xiao, J.

I. Jung, J. Xiao, V. Malyarchuk, C. Lu, M. Li, Z. Liu, J. Yoon, Y. Huang, and J. A. Rogers, Proc. Natl. Acad. Sci. USA 108, 1788 (2011).
[CrossRef]

Yeh, J. A.

Yoon, J.

I. Jung, J. Xiao, V. Malyarchuk, C. Lu, M. Li, Z. Liu, J. Yoon, Y. Huang, and J. A. Rogers, Proc. Natl. Acad. Sci. USA 108, 1788 (2011).
[CrossRef]

Yu, H.

Zappe, H.

P. Liebetraut, S. Petsch, J. Liebeskind, and H. Zappe, Light Sci. Appl. 2, e98 (2013).
[CrossRef]

P. Muller, R. Feuerstein, and H. Zappe, J. Microelectromech. Syst. 21, 1156 (2012).
[CrossRef]

P. Liebetraut, S. Petsch, W. Mönch, and H. Zappe, Appl. Opt. 50, 3268 (2011).
[CrossRef]

P. Liebetraut, S. Petsch, and H. Zappe, in 2012 International Conference on Optical MEMS and Nanophotonics (IEEE, 2012), vol. 13, pp. 176–177.

Zhou, G.

Adv. Funct. Mater.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, Adv. Funct. Mater. 21, 4152 (2011).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, Appl. Phys. Lett. 84, 4789 (2004).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Y. An, J. H. Hur, S. Kim, and J. H. Lee, IEEE Photon. Technol. Lett. 23, 1703 (2011).
[CrossRef]

L. Li, C. Liu, and Q.-h. Wang, IEEE Photon. Technol. Lett. 25, 989 (2013).
[CrossRef]

J. Microelectromech. Syst.

P. Muller, R. Feuerstein, and H. Zappe, J. Microelectromech. Syst. 21, 1156 (2012).
[CrossRef]

J. Micromech. Microeng.

T. Deutschmann and E. Oesterschulze, J. Micromech. Microeng. 23, 065032 (2013).
[CrossRef]

Light Sci. Appl.

P. Liebetraut, S. Petsch, J. Liebeskind, and H. Zappe, Light Sci. Appl. 2, e98 (2013).
[CrossRef]

Microfluid. Nanofluid.

U. Levy and R. Shamai, Microfluid. Nanofluid. 4, 97 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. Natl. Acad. Sci. USA

I. Jung, J. Xiao, V. Malyarchuk, C. Lu, M. Li, Z. Liu, J. Yoon, Y. Huang, and J. A. Rogers, Proc. Natl. Acad. Sci. USA 108, 1788 (2011).
[CrossRef]

Other

B.-k. Nguyen, E. Iwase, K. Matsumoto, and I. Shimoyama, in 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2007), pp. 305–308.

C.-H. Kim, K.-d. Jung, and W. Kim, in 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems (IEEE, 2009), pp. 156–159.

P. Liebetraut, S. Petsch, and H. Zappe, in 2012 International Conference on Optical MEMS and Nanophotonics (IEEE, 2012), vol. 13, pp. 176–177.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(A) Cross-sectional sketch of the human eye, showing the lens, iris, and retina; (B) corresponding sketch of the imaging system, showing the micro-iris, tunable lens, and CCD imager; (C) variable optofluidic iris actuated by electrowetting; (D) tunable solid body elastomer lens surrounded by actuation motors.

Fig. 2.
Fig. 2.

Comparison of the RMS and PV wavefront errors of the optofluidic iris, elastomer lens, and combined system at a fixed focal length and at four different aperture diameters (1.7, 2.5, 3.57, and 5.0 mm). System and iris apertures were varied by microfluidic aperture tuning. The lens was measured with fixed apertures.

Fig. 3.
Fig. 3.

MTF of the lens and aperture system for four different aperture diameters in the unstrained state of the lens. Also shown is the analytically calculated diffraction limit for a lens with a focal length of 60 and 5 mm aperture.

Fig. 4.
Fig. 4.

Focal length tuning behavior of the aperture/lens system. 3.5 mm of linear focal length change is achievable by applying 10% strain to the elastomer lens. The inset shows qualitative imaging results for 0% and 10% strain.

Fig. 5.
Fig. 5.

Change of the wavefront error when straining the lens at a fixed aperture size of 5 mm. Over the complete tuning range, the wavefront changes by less than λ/10 (PV).

Fig. 6.
Fig. 6.

Measured OPD maps of the lens/aperture system for varying aperture diameters and focal lengths. Focal length tuning does not affect the wavefront error, whereas decreasing the aperture size does reduce the overall wavefront error.

Metrics