Abstract

The use of an optically thick slab may provide versatile solutions for the realization of a current injection-type laser using photonic crystals. Here, we show that a transversely higher-order defect mode can be designed to be confined by a photonic bandgap in such a thick slab. Using simulations, we show that a high Q of >105 is possible from a finely tuned second-order hexapole mode (2h). Experimentally, we achieve optically pumped pulsed lasing at 1347 nm from the 2h with a peak threshold pump power of 88 μW.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
    [CrossRef]
  2. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, Science 305, 1444 (2004).
    [CrossRef]
  3. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, Nat. Photonics 5, 297 (2011).
    [CrossRef]
  4. S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, Opt. Express 20, 3773 (2012).
    [CrossRef]
  5. S.-H. Kim, J. Huang, and A. Scherer, Opt. Lett. 37, 488 (2012).
    [CrossRef]
  6. S. Johnson and J. Joannopoulos, Opt. Express 8, 173 (2001).
    [CrossRef]
  7. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  8. H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, IEEE J. Quantum Electron. 38, 1353 (2002).
    [CrossRef]
  9. S.-H. Kim, A. Homyk, S. Walavalkar, and A. Scherer, “High-Q impurity photon states bounded by a photonic-band-pseudogap in an optically-thick photonic-crystal slab,” http://arxiv.org/abs/1209.5726 .
  10. S. Kim, A. Scherer, J. Huang, and D. Y. Oh, “Chemical-etched nanostructures and related devices,” U.S. patent application US2012/0153260A1 (June21, 2012).

2012

2011

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, Nat. Photonics 5, 297 (2011).
[CrossRef]

2004

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, Science 305, 1444 (2004).
[CrossRef]

2002

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, IEEE J. Quantum Electron. 38, 1353 (2002).
[CrossRef]

2001

1999

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Baek, J.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, Science 305, 1444 (2004).
[CrossRef]

Ellis, B.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, Nat. Photonics 5, 297 (2011).
[CrossRef]

Fan, S.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Haller, E. E.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, Nat. Photonics 5, 297 (2011).
[CrossRef]

Harris, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, Nat. Photonics 5, 297 (2011).
[CrossRef]

Hasebe, K.

Huang, J.

S.-H. Kim, J. Huang, and A. Scherer, Opt. Lett. 37, 488 (2012).
[CrossRef]

S. Kim, A. Scherer, J. Huang, and D. Y. Oh, “Chemical-etched nanostructures and related devices,” U.S. patent application US2012/0153260A1 (June21, 2012).

Huh, J.

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, IEEE J. Quantum Electron. 38, 1353 (2002).
[CrossRef]

Hwang, J.-K.

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, IEEE J. Quantum Electron. 38, 1353 (2002).
[CrossRef]

Joannopoulos, J.

Joannopoulos, J. D.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Johnson, S.

Johnson, S. G.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Ju, Y.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, Science 305, 1444 (2004).
[CrossRef]

Kakitsuka, T.

Kim, J.-S.

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, IEEE J. Quantum Electron. 38, 1353 (2002).
[CrossRef]

Kim, S.

S. Kim, A. Scherer, J. Huang, and D. Y. Oh, “Chemical-etched nanostructures and related devices,” U.S. patent application US2012/0153260A1 (June21, 2012).

Kim, S.-B.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, Science 305, 1444 (2004).
[CrossRef]

Kim, S.-H.

S.-H. Kim, J. Huang, and A. Scherer, Opt. Lett. 37, 488 (2012).
[CrossRef]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, Science 305, 1444 (2004).
[CrossRef]

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, IEEE J. Quantum Electron. 38, 1353 (2002).
[CrossRef]

Kolodziejski, L. A.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Kwon, S.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, Science 305, 1444 (2004).
[CrossRef]

Lee, Y.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, Science 305, 1444 (2004).
[CrossRef]

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, IEEE J. Quantum Electron. 38, 1353 (2002).
[CrossRef]

Matsuo, S.

Mayer, M. A.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, Nat. Photonics 5, 297 (2011).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Notomi, M.

Nozaki, K.

Oh, D. Y.

S. Kim, A. Scherer, J. Huang, and D. Y. Oh, “Chemical-etched nanostructures and related devices,” U.S. patent application US2012/0153260A1 (June21, 2012).

Park, H.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, Science 305, 1444 (2004).
[CrossRef]

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, IEEE J. Quantum Electron. 38, 1353 (2002).
[CrossRef]

Ryu, H.-Y.

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, IEEE J. Quantum Electron. 38, 1353 (2002).
[CrossRef]

Sarmiento, T.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, Nat. Photonics 5, 297 (2011).
[CrossRef]

Sato, T.

Scherer, A.

S.-H. Kim, J. Huang, and A. Scherer, Opt. Lett. 37, 488 (2012).
[CrossRef]

S. Kim, A. Scherer, J. Huang, and D. Y. Oh, “Chemical-etched nanostructures and related devices,” U.S. patent application US2012/0153260A1 (June21, 2012).

Shambat, G.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, Nat. Photonics 5, 297 (2011).
[CrossRef]

Shinya, A.

Takeda, K.

Taniyama, H.

Villeneuve, P. R.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Vuckovic, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, Nat. Photonics 5, 297 (2011).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Yang, J.-K.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, Science 305, 1444 (2004).
[CrossRef]

IEEE J. Quantum Electron.

H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, IEEE J. Quantum Electron. 38, 1353 (2002).
[CrossRef]

Nat. Photonics

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, Nat. Photonics 5, 297 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Science

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, Science 305, 1444 (2004).
[CrossRef]

Other

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

S.-H. Kim, A. Homyk, S. Walavalkar, and A. Scherer, “High-Q impurity photon states bounded by a photonic-band-pseudogap in an optically-thick photonic-crystal slab,” http://arxiv.org/abs/1209.5726 .

S. Kim, A. Scherer, J. Huang, and D. Y. Oh, “Chemical-etched nanostructures and related devices,” U.S. patent application US2012/0153260A1 (June21, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) 2-D map of a PBG for a triagular-lattice air-hole ( radius = r ) PhC in a dielectric slab ( n slab = 3.4 ) with a thickness of T . The 2-D color scale map represents the size of the PBG in terms of the gap-to-midgap ratio defined by Δ ω ˜ Δ ω / ω c , where ω c is the center frequency of a PBG. The contour curves of ω c are overlaid on the 2-D map. Note that throughout the Letter, all frequencies are normalized by 2 π c / a ; hence ω = a / λ (dimensionless). (b) First-order dipole mode (1d) [ Q = 2600 and V = 0.82 ( λ / n slab ) 3 ] oscillating at λ = 1341 nm with a = 325 nm . (c) Second-order hexapole mode (2h) [ Q = 15 , 200 and V = 2.23 ( λ / n slab ) 3 ] oscillating at λ = 1365 nm with a = 500 nm . Both modes are formed in a slab with T = 606 nm .

Fig. 2.
Fig. 2.

(a) Schematic diagram shows how we finely tune air-hole sizes and locations to optimize Q . (b) Electric-field intensity distribution ( | E | 2 ) of the highest- Q mode (case II in Table 1).

Fig. 3.
Fig. 3.

(a) SEM image taken at a tilt of about 10°. Note that T = 606 nm . (b) FDTD simulated mode profile. (c) Light-in versus light-out ( L L ) curve. Insets show near-infrared camera images taken before and after the lasing. (d) Lasing spectrum measured at a peak pump power of 200 μW.

Tables (1)

Tables Icon

Table 1. Examples of the Second-Order Hexapole Mode in a T = 606 nm Slab

Metrics