Abstract

A simple and flexible photonic scheme for the generation of ultrawideband (UWB) pulse shape modulation based on dual-filter tuning is proposed and experimentally demonstrated. By launching a Gaussian signal into a phase modulator, the UWB polarity-switchable monocycle is generated at the output of two optical bandpass filters by adjusting the central wavelengths of the dual-filter appropriately. The doublet pulses with inverted polarities are obtained by combining the pair of UWB monocycle pulses under proper time delay. Meanwhile, with a predefined code pattern and controlling the optical path difference of the two monocycle pulses, the pulse shape modulation can be performed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Porcine and W. Hirt, IEEE Commun. Mag. 41, 66 (2003).
    [CrossRef]
  2. G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
    [CrossRef]
  3. Y. Kim, S. Kim, H. Jang, S. Hur, J. Lee, and J. Jeong, in Proceedings of IEEE International Topical Meeting on Microwave Photonics (IEEE, 2005), p. 173.
  4. H. Chen, M. Chen, T. Wang, M. Li, and S. Xie, J. Lightwave Technol. 26, 2492 (2008).
    [CrossRef]
  5. J. Dong, X. Zhang, Y. Zhang, and D. Huang, Electron. Lett. 44, 1083 (2008).
    [CrossRef]
  6. J. Li, B. P. P. Kuo, and K. Y. Wong, in Proceedings of Opto-Electronic and Communications Conference and the Australian Conference on Optical Fibre Technology (IEEE, 2008), p. 1.
  7. Q. Wang and J. Yao, J. Lightwave Technol. 25, 3626 (2007).
    [CrossRef]
  8. F. Zeng and J. Yao, IEEE Photon. Technol. Lett. 18, 823 (2006).
    [CrossRef]
  9. M. Bolea, J. Mora, B. Ortega, and J. Capmany, Opt. Express 17, 5023 (2009).
    [CrossRef]
  10. Q. Wang and J. Yao, Opt. Lett. 33, 1017 (2008).
    [CrossRef]
  11. P. Ou, Y. Zhang, and C.-X. Zhang, Opt. Express 16, 5130 (2008).
    [CrossRef]
  12. X. Yu, T. B. Gibbon, and I. T. Monroy, IEEE Photon. Technol. Lett. 21, 1235 (2009).
    [CrossRef]
  13. S. Wang, H. Chen, M. Xin, M. Chen, and S. Xie, Opt. Lett. 34, 3092 (2009).
    [CrossRef]
  14. Y. Dai and J. Yao, J. Lightwave Technol. 27, 1448 (2009).
    [CrossRef]
  15. S. Pan and J. Yao, J. Lightwave Technol. 28, 2445 (2010).
    [CrossRef]
  16. J. Shao and J. Sun, Opt. Lett. 37, 3471 (2012).
    [CrossRef]

2012

2010

2009

2008

2007

2006

F. Zeng and J. Yao, IEEE Photon. Technol. Lett. 18, 823 (2006).
[CrossRef]

2003

D. Porcine and W. Hirt, IEEE Commun. Mag. 41, 66 (2003).
[CrossRef]

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

Aiello, G. R.

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

Bolea, M.

Capmany, J.

Chen, H.

Chen, M.

Dai, Y.

Dong, J.

J. Dong, X. Zhang, Y. Zhang, and D. Huang, Electron. Lett. 44, 1083 (2008).
[CrossRef]

Gibbon, T. B.

X. Yu, T. B. Gibbon, and I. T. Monroy, IEEE Photon. Technol. Lett. 21, 1235 (2009).
[CrossRef]

Hirt, W.

D. Porcine and W. Hirt, IEEE Commun. Mag. 41, 66 (2003).
[CrossRef]

Huang, D.

J. Dong, X. Zhang, Y. Zhang, and D. Huang, Electron. Lett. 44, 1083 (2008).
[CrossRef]

Hur, S.

Y. Kim, S. Kim, H. Jang, S. Hur, J. Lee, and J. Jeong, in Proceedings of IEEE International Topical Meeting on Microwave Photonics (IEEE, 2005), p. 173.

Jang, H.

Y. Kim, S. Kim, H. Jang, S. Hur, J. Lee, and J. Jeong, in Proceedings of IEEE International Topical Meeting on Microwave Photonics (IEEE, 2005), p. 173.

Jeong, J.

Y. Kim, S. Kim, H. Jang, S. Hur, J. Lee, and J. Jeong, in Proceedings of IEEE International Topical Meeting on Microwave Photonics (IEEE, 2005), p. 173.

Kim, S.

Y. Kim, S. Kim, H. Jang, S. Hur, J. Lee, and J. Jeong, in Proceedings of IEEE International Topical Meeting on Microwave Photonics (IEEE, 2005), p. 173.

Kim, Y.

Y. Kim, S. Kim, H. Jang, S. Hur, J. Lee, and J. Jeong, in Proceedings of IEEE International Topical Meeting on Microwave Photonics (IEEE, 2005), p. 173.

Kuo, B. P. P.

J. Li, B. P. P. Kuo, and K. Y. Wong, in Proceedings of Opto-Electronic and Communications Conference and the Australian Conference on Optical Fibre Technology (IEEE, 2008), p. 1.

Lee, J.

Y. Kim, S. Kim, H. Jang, S. Hur, J. Lee, and J. Jeong, in Proceedings of IEEE International Topical Meeting on Microwave Photonics (IEEE, 2005), p. 173.

Li, J.

J. Li, B. P. P. Kuo, and K. Y. Wong, in Proceedings of Opto-Electronic and Communications Conference and the Australian Conference on Optical Fibre Technology (IEEE, 2008), p. 1.

Li, M.

Monroy, I. T.

X. Yu, T. B. Gibbon, and I. T. Monroy, IEEE Photon. Technol. Lett. 21, 1235 (2009).
[CrossRef]

Mora, J.

Ortega, B.

Ou, P.

Pan, S.

Porcine, D.

D. Porcine and W. Hirt, IEEE Commun. Mag. 41, 66 (2003).
[CrossRef]

Rogerson, G. D.

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

Shao, J.

Sun, J.

Wang, Q.

Wang, S.

Wang, T.

Wong, K. Y.

J. Li, B. P. P. Kuo, and K. Y. Wong, in Proceedings of Opto-Electronic and Communications Conference and the Australian Conference on Optical Fibre Technology (IEEE, 2008), p. 1.

Xie, S.

Xin, M.

Yao, J.

Yu, X.

X. Yu, T. B. Gibbon, and I. T. Monroy, IEEE Photon. Technol. Lett. 21, 1235 (2009).
[CrossRef]

Zeng, F.

F. Zeng and J. Yao, IEEE Photon. Technol. Lett. 18, 823 (2006).
[CrossRef]

Zhang, C.-X.

Zhang, X.

J. Dong, X. Zhang, Y. Zhang, and D. Huang, Electron. Lett. 44, 1083 (2008).
[CrossRef]

Zhang, Y.

J. Dong, X. Zhang, Y. Zhang, and D. Huang, Electron. Lett. 44, 1083 (2008).
[CrossRef]

P. Ou, Y. Zhang, and C.-X. Zhang, Opt. Express 16, 5130 (2008).
[CrossRef]

Electron. Lett.

J. Dong, X. Zhang, Y. Zhang, and D. Huang, Electron. Lett. 44, 1083 (2008).
[CrossRef]

IEEE Commun. Mag.

D. Porcine and W. Hirt, IEEE Commun. Mag. 41, 66 (2003).
[CrossRef]

IEEE Microw. Mag.

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

F. Zeng and J. Yao, IEEE Photon. Technol. Lett. 18, 823 (2006).
[CrossRef]

X. Yu, T. B. Gibbon, and I. T. Monroy, IEEE Photon. Technol. Lett. 21, 1235 (2009).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Other

Y. Kim, S. Kim, H. Jang, S. Hur, J. Lee, and J. Jeong, in Proceedings of IEEE International Topical Meeting on Microwave Photonics (IEEE, 2005), p. 173.

J. Li, B. P. P. Kuo, and K. Y. Wong, in Proceedings of Opto-Electronic and Communications Conference and the Australian Conference on Optical Fibre Technology (IEEE, 2008), p. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental configuration of the proposed scheme.

Fig. 2.
Fig. 2.

(a) Principle of the generated optical monocycle pulses with opposite polarities of the OBFs. (b) Illustration for pulse shape modulation of UWB sequence.

Fig. 3.
Fig. 3.

Waveforms and spectrum of the generated monocycles. (a) Waveforms of the positive (blue solid curve) and negative (red dashed curve) monocycles. (b) Corresponding electrical spectrum.

Fig. 4.
Fig. 4.

Waveforms and spectrum of the generated doublets. (a) Waveforms of the positive (blue solid curve) and negative (red dashed curve) doublet pulses. (b) Corresponding electrical spectrum.

Fig. 5.
Fig. 5.

(a) Combination waveforms of the pair polarity-reversed UWB monocycles interfere with a t1 relative time delay. (b) UWB PSM coding sequence CS1 with different polarities and shapes. (c) Corresponding spectrum of the UWB PSM coding sequence.

Fig. 6.
Fig. 6.

(a) UWB code sequence (CS2) when the time delay is fixed at t1. (b) Corresponding spectrum of the UWB CS2.

Fig. 7.
Fig. 7.

(a) Combination waveforms of the pair polarity-reversed UWB monocycles interfere with a relative time delay of 1314 ps. (b) UWB code sequence (CS3) when the data sequence is fixed as D1. (c) Corresponding spectrum of the UWB CS3.

Metrics