Abstract

Suspended graphene waveguides over micrometer-scale metal-mesh screens were used as platforms for Raman scattering. Raman signals of B. megaterium spores were found sensitive to in-plane rotations and tilt of the waveguides with respect to the incident linearly polarized pump beam. When at plasmonic resonance for the equivalent long wavelength of the vibration frequency, the Raman signal exhibited an additional quadratic effect.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Geim, Science 324, 1530 (2009).
    [CrossRef]
  2. Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, and P. Avouris, Science 327, 662 (2010).
    [CrossRef]
  3. A. Vakil and N. Engheta, Science 332, 1291 (2011).
    [CrossRef]
  4. A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. Z. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, Appl. Phys. Lett.100, 181109 (2012).
    [CrossRef]
  5. H. Grebel, in Structured Surfaces as Optical Metamaterials, Alexei A. Maradudin, ed. (Cambridge, 2011), Chap. 11.
  6. B. J. Munk, Frequency Selective Surfaces (John Wiley & Sons, 2000).
  7. A. Banerjee, D. Sliwinski, K. P. Stewart, K. D. Möller, and H. Grebel, Opt. Lett. 35, 1635 (2010).
    [CrossRef]
  8. K. Kneipp, M. Moskovits, and H. Kneipp, eds., Surface-enhanced Raman Scattering: Physics and Applications (Springer-Verlag, 2006).
  9. A. Banerjee and H. Grebel, Nanotechnology 19, 365303 (2008).
    [CrossRef]
  10. S. P. Layne and I. J. Bigio, Phys. Script. 33, 91 (1986).
    [CrossRef]
  11. R. Li, A. Banerjee, and H. Grebel, Opt. Express 17, 1622 (2009).
    [CrossRef]
  12. A. Yariv, Quantum Electronics, 3rd ed. (John Wiley & Sons, 1989).

2011 (1)

A. Vakil and N. Engheta, Science 332, 1291 (2011).
[CrossRef]

2010 (2)

Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, and P. Avouris, Science 327, 662 (2010).
[CrossRef]

A. Banerjee, D. Sliwinski, K. P. Stewart, K. D. Möller, and H. Grebel, Opt. Lett. 35, 1635 (2010).
[CrossRef]

2009 (2)

2008 (1)

A. Banerjee and H. Grebel, Nanotechnology 19, 365303 (2008).
[CrossRef]

1986 (1)

S. P. Layne and I. J. Bigio, Phys. Script. 33, 91 (1986).
[CrossRef]

Atmatzakis, E.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. Z. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, Appl. Phys. Lett.100, 181109 (2012).
[CrossRef]

Avouris, P.

Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, and P. Avouris, Science 327, 662 (2010).
[CrossRef]

Banerjee, A.

Bigio, I. J.

S. P. Layne and I. J. Bigio, Phys. Script. 33, 91 (1986).
[CrossRef]

Boden, S. A.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. Z. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, Appl. Phys. Lett.100, 181109 (2012).
[CrossRef]

Chiu, H.-Y.

Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, and P. Avouris, Science 327, 662 (2010).
[CrossRef]

De Angelis, F.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. Z. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, Appl. Phys. Lett.100, 181109 (2012).
[CrossRef]

Di Fabrizio, E.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. Z. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, Appl. Phys. Lett.100, 181109 (2012).
[CrossRef]

Dimitrakopoulos, C.

Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, and P. Avouris, Science 327, 662 (2010).
[CrossRef]

Engheta, N.

A. Vakil and N. Engheta, Science 332, 1291 (2011).
[CrossRef]

Farmer, D. B.

Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, and P. Avouris, Science 327, 662 (2010).
[CrossRef]

Geim, A. K.

A. K. Geim, Science 324, 1530 (2009).
[CrossRef]

Grebel, H.

A. Banerjee, D. Sliwinski, K. P. Stewart, K. D. Möller, and H. Grebel, Opt. Lett. 35, 1635 (2010).
[CrossRef]

R. Li, A. Banerjee, and H. Grebel, Opt. Express 17, 1622 (2009).
[CrossRef]

A. Banerjee and H. Grebel, Nanotechnology 19, 365303 (2008).
[CrossRef]

H. Grebel, in Structured Surfaces as Optical Metamaterials, Alexei A. Maradudin, ed. (Cambridge, 2011), Chap. 11.

Grill, A.

Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, and P. Avouris, Science 327, 662 (2010).
[CrossRef]

Jenkins, K. A.

Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, and P. Avouris, Science 327, 662 (2010).
[CrossRef]

Layne, S. P.

S. P. Layne and I. J. Bigio, Phys. Script. 33, 91 (1986).
[CrossRef]

Li, R.

Lin, Y.-M.

Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, and P. Avouris, Science 327, 662 (2010).
[CrossRef]

Luo, Z.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. Z. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, Appl. Phys. Lett.100, 181109 (2012).
[CrossRef]

Möller, K. D.

Munk, B. J.

B. J. Munk, Frequency Selective Surfaces (John Wiley & Sons, 2000).

Nikolaenko, A. E.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. Z. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, Appl. Phys. Lett.100, 181109 (2012).
[CrossRef]

Papasimakis, N.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. Z. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, Appl. Phys. Lett.100, 181109 (2012).
[CrossRef]

Shen, Z. Z.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. Z. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, Appl. Phys. Lett.100, 181109 (2012).
[CrossRef]

Sliwinski, D.

Stewart, K. P.

Vakil, A.

A. Vakil and N. Engheta, Science 332, 1291 (2011).
[CrossRef]

Yariv, A.

A. Yariv, Quantum Electronics, 3rd ed. (John Wiley & Sons, 1989).

Zheludev, N. I.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. Z. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, Appl. Phys. Lett.100, 181109 (2012).
[CrossRef]

Nanotechnology (1)

A. Banerjee and H. Grebel, Nanotechnology 19, 365303 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Script. (1)

S. P. Layne and I. J. Bigio, Phys. Script. 33, 91 (1986).
[CrossRef]

Science (3)

A. K. Geim, Science 324, 1530 (2009).
[CrossRef]

Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, and P. Avouris, Science 327, 662 (2010).
[CrossRef]

A. Vakil and N. Engheta, Science 332, 1291 (2011).
[CrossRef]

Other (5)

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. Z. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, Appl. Phys. Lett.100, 181109 (2012).
[CrossRef]

H. Grebel, in Structured Surfaces as Optical Metamaterials, Alexei A. Maradudin, ed. (Cambridge, 2011), Chap. 11.

B. J. Munk, Frequency Selective Surfaces (John Wiley & Sons, 2000).

K. Kneipp, M. Moskovits, and H. Kneipp, eds., Surface-enhanced Raman Scattering: Physics and Applications (Springer-Verlag, 2006).

A. Yariv, Quantum Electronics, 3rd ed. (John Wiley & Sons, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

(a) SEM picture of graphene-coated metal screen. The laser beam was focused at the opening center, and the substrate was tilted and rotated. (b) Configuration of the experiment. (c) Raman spectra of B. megaterium.

Fig. 2.
Fig. 2.

(a) Raman signal of B. megaterium at 900cm1 versus in-plane rotation angle at θ=4°. Raman data for only graphene-coated screen (G-IR) at 900cm1 are also provided. (b) Blue dots: normalized experimental Raman data as a function of tilt angle at ϕ180°. Solid red curve: reflection coefficient fit using coupled-mode theory. (c) Raman signal as a function of pump intensity for B. megaterium at 900cm1 and for graphene at 1600cm1 (same sample); θ04°, ϕ180°. (d) Roles reversed at θ24° and ϕ180°.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

sin(θ)=|G|cos(ϕ)±(neff)2|G|2(1cos2(ϕ)).
xES=i3ωS24kSc2[χ(3)|EL|2ES+54[δε2]EΩELexp(iΔkx)].
ISIS(0)exp(i3ωSχ(3)ILd2ε0c2nSnL+i15ωSχ(5)IL2d8ε0c3nSnL2).

Metrics