Abstract

Integrated optical devices based on coupled resonator optical waveguides (CROW) for reconfigurable band routing are explored. A reconfiguration principle based on two bus interferometric CROW resonant structures is proposed. This device extends the functionalities of simple add-drop filters, adding more switching features. These new functionalities yield three functional states that comprehend a complete reconfigurability and a 50% splitter mode.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, IEEE Comm. Magazine 48(7), 40 (2010).
    [CrossRef]
  2. D. T. Neilson, IEEE J. Sel. Top. Quantum Electron. 12, 669 (2006).
    [CrossRef]
  3. Y. Xie, J. Xu, J. Zhang, Z. Wu, and G. Xia, J. Lightwave Technol. 30, 198 (2012).
    [CrossRef]
  4. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
    [CrossRef]
  5. L.-W. Luo, S. Ibrahim, A. Nitkowski, Z. Ding, C. B. Poitras, S. J. Ben Yoo, and M. Lipson, Opt. Express 18, 23079(2010).
    [CrossRef]
  6. Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, IEEE Photon. Technol. Lett. 19, 1072 (2007).
    [CrossRef]
  7. A. Yariv, Y. Xu, R. Lee, and A. Scherer, Opt. Lett. 24, 711 (1999).
    [CrossRef]
  8. X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, IEEE Photon. Technol. Lett. 24, 821 (2012).
    [CrossRef]
  9. A. Densmore, S. Janz, R. Ma, J. H. Schmid, D.-X. Xu, A. Delage, J. Lapointe, M. Vachon, and P. Cheben, Opt. Express 17, 10457 (2009).
    [CrossRef]
  10. M. Geng, L. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. Liu, Opt. Express 17, 5502 (2009).
    [CrossRef]
  11. Y. Vlasov, W. M. J. Green, and F. Xia, Nat. Photonics 2, 242 (2008).
    [CrossRef]

2012 (2)

Y. Xie, J. Xu, J. Zhang, Z. Wu, and G. Xia, J. Lightwave Technol. 30, 198 (2012).
[CrossRef]

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, IEEE Photon. Technol. Lett. 24, 821 (2012).
[CrossRef]

2010 (2)

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, IEEE Comm. Magazine 48(7), 40 (2010).
[CrossRef]

L.-W. Luo, S. Ibrahim, A. Nitkowski, Z. Ding, C. B. Poitras, S. J. Ben Yoo, and M. Lipson, Opt. Express 18, 23079(2010).
[CrossRef]

2009 (2)

2008 (1)

Y. Vlasov, W. M. J. Green, and F. Xia, Nat. Photonics 2, 242 (2008).
[CrossRef]

2007 (1)

Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, IEEE Photon. Technol. Lett. 19, 1072 (2007).
[CrossRef]

2006 (1)

D. T. Neilson, IEEE J. Sel. Top. Quantum Electron. 12, 669 (2006).
[CrossRef]

2004 (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[CrossRef]

1999 (1)

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[CrossRef]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[CrossRef]

Basch, B.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, IEEE Comm. Magazine 48(7), 40 (2010).
[CrossRef]

Ben Yoo, S. J.

Chang, S.-J.

Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, IEEE Photon. Technol. Lett. 19, 1072 (2007).
[CrossRef]

Cheben, P.

Chen, P.

Chen, Y. J.

Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, IEEE Photon. Technol. Lett. 19, 1072 (2007).
[CrossRef]

Delage, A.

Densmore, A.

Ding, Z.

Egorov, R.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, IEEE Comm. Magazine 48(7), 40 (2010).
[CrossRef]

Feng, S.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, IEEE Photon. Technol. Lett. 24, 821 (2012).
[CrossRef]

Geng, M.

Green, W. M. J.

Y. Vlasov, W. M. J. Green, and F. Xia, Nat. Photonics 2, 242 (2008).
[CrossRef]

Gringeri, S.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, IEEE Comm. Magazine 48(7), 40 (2010).
[CrossRef]

Ibrahim, S.

Janz, S.

Jia, L.

Kwong, D.-L.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, IEEE Photon. Technol. Lett. 24, 821 (2012).
[CrossRef]

Lapointe, J.

Lee, R.

Liow, T.-Y.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, IEEE Photon. Technol. Lett. 24, 821 (2012).
[CrossRef]

Lipson, M.

Liu, Y.

Lo, G.-Q.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, IEEE Photon. Technol. Lett. 24, 821 (2012).
[CrossRef]

Luo, L.-W.

Luo, X.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, IEEE Photon. Technol. Lett. 24, 821 (2012).
[CrossRef]

Ma, R.

Neilson, D. T.

D. T. Neilson, IEEE J. Sel. Top. Quantum Electron. 12, 669 (2006).
[CrossRef]

Ni, C.-Y.

Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, IEEE Photon. Technol. Lett. 19, 1072 (2007).
[CrossRef]

Nitkowski, A.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[CrossRef]

Poitras, C. B.

Poon, A. W.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, IEEE Photon. Technol. Lett. 24, 821 (2012).
[CrossRef]

Scherer, A.

Schmid, J. H.

Shukla, V.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, IEEE Comm. Magazine 48(7), 40 (2010).
[CrossRef]

Song, J.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, IEEE Photon. Technol. Lett. 24, 821 (2012).
[CrossRef]

Vachon, M.

Vlasov, Y.

Y. Vlasov, W. M. J. Green, and F. Xia, Nat. Photonics 2, 242 (2008).
[CrossRef]

Wang, T.

Wang, Z.

Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, IEEE Photon. Technol. Lett. 19, 1072 (2007).
[CrossRef]

Wu, Z.

Xia, F.

Y. Vlasov, W. M. J. Green, and F. Xia, Nat. Photonics 2, 242 (2008).
[CrossRef]

Xia, G.

Xia, T. J.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, IEEE Comm. Magazine 48(7), 40 (2010).
[CrossRef]

Xie, Y.

Xu, D.-X.

Xu, J.

Xu, Y.

Yang, L.

Yariv, A.

Yu, M.

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, IEEE Photon. Technol. Lett. 24, 821 (2012).
[CrossRef]

Zhang, J.

Zhang, L.

IEEE Comm. Magazine (1)

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, IEEE Comm. Magazine 48(7), 40 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. T. Neilson, IEEE J. Sel. Top. Quantum Electron. 12, 669 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, IEEE Photon. Technol. Lett. 19, 1072 (2007).
[CrossRef]

X. Luo, J. Song, S. Feng, A. W. Poon, T.-Y. Liow, M. Yu, G.-Q. Lo, and D.-L. Kwong, IEEE Photon. Technol. Lett. 24, 821 (2012).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (1)

Y. Vlasov, W. M. J. Green, and F. Xia, Nat. Photonics 2, 242 (2008).
[CrossRef]

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Design of the reconfigurable interleaver. Photonic layer (blue): interferometric device composed of an input channel (in) and three outputs, which are the reference (ref), the T and the D ports. MMIs are 50/50 splitters. The actual device is within the rectangle. The metallic heater is shown in orange. Its task is to heat one arm of the interferometer to induce a Δϕ on the propagating signal. See text for other symbol explanation. (b) Simulated response of the T port for three phase difference values.

Fig. 2.
Fig. 2.

Transmission spectra of the (a) T port and (b) D port for several powers dissipated by the heater: 0 mW (•), 7.7 mW (▴), and 12.2 mW (★) corresponding to a Δϕ, respectively, of 0π, π/2, and π. The inset is the table of routing for the band highlighted by the gray area. (c) CROW chromatic dispersion (red curve, left axis) superimposed to the T port spectra (black dots, right axis).

Fig. 3.
Fig. 3.

(a) Transmission spectrum for the T and D ports measured of an eight-resonators device. (b) Simulated spectra for an eight-resonators device (left) compared against a tapered one (right). Black continuous curve is for T port and red dotted curve is for D port.

Tables (1)

Tables Icon

Table 1. Channel Insertion Losses, Extinction Ratio and Band Widths for the Reconfigurable CROW Device with N Resonators

Metrics