Abstract

A fiber Bragg grating (FBG) based bend measurement method using an etched fiber is proposed that utilizes the coupling of the core mode to the cladding and radiation modes at the bending region. An etching region of 99 µm diameter that serves as bend sensing head is achieved at 10 mm upstream the FBG through processing in 40% hydrofluoric acid, while the FBG acts as a narrowband reflector to enhance the sensitivity. The power variation curves are obtained for a wide range of bend angles, but the performance is limited due to the presence of the loss peaks. The sensing response is improved by immersing the etching region in a refractive index matching gel. The results are analyzed by using curve fitting formulas and are in good agreement. A large dynamic range of 27° to +27° and sensitivity of 0.43dBm/deg is achieved, which can be enhanced by reducing the etched diameter.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Mizunami, H. Tatehata, and H. Kawashima, Meas. Sci. Technol. 12, 914 (2001).
    [CrossRef]
  2. Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, J. Lightwave Technol. 15, 779 (1997).
    [CrossRef]
  3. Z. Wei, D. Song, Q. Zhao, and H. L. Cui, IEEE Sens. J. 8, 1615 (2008).
    [CrossRef]
  4. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, IEEE Photon. Technol. Lett. 17, 1495 (2005).
    [CrossRef]
  5. S. M. Lee, S. S. Saini, and M. Y. Jeong, IEEE Photon. Technol. Lett. 22, 1431 (2010).
    [CrossRef]
  6. T. A. Berkoff and A. D. Kersey, IEEE Photon. Technol. Lett. 8, 1677 (1996).
    [CrossRef]
  7. O. Frazão, R. Falate, J. L. Fabris, J. L. Santos, L. A. Ferreira, and F. M. Arauújo, Opt. Lett. 31, 2960 (2006).
    [CrossRef]
  8. T. Erdogan, J. Opt. Soc. Am. A 14, 1760 (1997).
    [CrossRef]
  9. F. Prudenzano, L. Mescia, T. Palmisano, M. Surico, M. De Sario, and G. C. Righini, Appl. Opt. 51, 1420 (2012).
    [CrossRef]
  10. L. Y. Shao and J. Albert, Opt. Lett. 35, 1034 (2010).
    [CrossRef]
  11. H. Y. Au, S. K. Khijwania, H. Y. Fu, W. H. Chung, and H. Y. Tam, J. Lightwave Technol. 29, 1714 (2011).
    [CrossRef]
  12. D. Marcuse, J. Opt. Soc. Am. 66, 216 (1976).
    [CrossRef]
  13. H. Renner, J. Lightwave Technol. 10, 544 (1992).
    [CrossRef]
  14. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, IEEE Photon. Technol. Lett. 17, 1253 (2005).
    [CrossRef]
  15. K. Zhou, X. Chen, L. Zhang, and I. Bennion, Meas. Sci. Technol. 17, 1140 (2006).
    [CrossRef]
  16. B. Jiang, J. Zhao, C. Qin, W. Jiang, A. Rauf, F. Fan, and Z. Huang, Opt. Lett. 36, 4308 (2011).
    [CrossRef]

2012 (1)

2011 (2)

2010 (2)

L. Y. Shao and J. Albert, Opt. Lett. 35, 1034 (2010).
[CrossRef]

S. M. Lee, S. S. Saini, and M. Y. Jeong, IEEE Photon. Technol. Lett. 22, 1431 (2010).
[CrossRef]

2008 (1)

Z. Wei, D. Song, Q. Zhao, and H. L. Cui, IEEE Sens. J. 8, 1615 (2008).
[CrossRef]

2006 (2)

2005 (2)

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, IEEE Photon. Technol. Lett. 17, 1253 (2005).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, IEEE Photon. Technol. Lett. 17, 1495 (2005).
[CrossRef]

2001 (1)

T. Mizunami, H. Tatehata, and H. Kawashima, Meas. Sci. Technol. 12, 914 (2001).
[CrossRef]

1997 (2)

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, J. Lightwave Technol. 15, 779 (1997).
[CrossRef]

T. Erdogan, J. Opt. Soc. Am. A 14, 1760 (1997).
[CrossRef]

1996 (1)

T. A. Berkoff and A. D. Kersey, IEEE Photon. Technol. Lett. 8, 1677 (1996).
[CrossRef]

1992 (1)

H. Renner, J. Lightwave Technol. 10, 544 (1992).
[CrossRef]

1976 (1)

Albert, J.

Arauújo, F. M.

Au, H. Y.

Bennion, I.

K. Zhou, X. Chen, L. Zhang, and I. Bennion, Meas. Sci. Technol. 17, 1140 (2006).
[CrossRef]

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, J. Lightwave Technol. 15, 779 (1997).
[CrossRef]

Berkoff, T. A.

T. A. Berkoff and A. D. Kersey, IEEE Photon. Technol. Lett. 8, 1677 (1996).
[CrossRef]

Campopiano, S.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, IEEE Photon. Technol. Lett. 17, 1495 (2005).
[CrossRef]

Chen, X.

K. Zhou, X. Chen, L. Zhang, and I. Bennion, Meas. Sci. Technol. 17, 1140 (2006).
[CrossRef]

Chryssis, A. N.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, IEEE Photon. Technol. Lett. 17, 1253 (2005).
[CrossRef]

Chung, W. H.

Cui, H. L.

Z. Wei, D. Song, Q. Zhao, and H. L. Cui, IEEE Sens. J. 8, 1615 (2008).
[CrossRef]

Cusano, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, IEEE Photon. Technol. Lett. 17, 1495 (2005).
[CrossRef]

Cutolo, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, IEEE Photon. Technol. Lett. 17, 1495 (2005).
[CrossRef]

Dagenais, M.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, IEEE Photon. Technol. Lett. 17, 1253 (2005).
[CrossRef]

De Sario, M.

Erdogan, T.

Fabris, J. L.

Falate, R.

Fan, F.

Ferreira, L. A.

Frazão, O.

Fu, H. Y.

Giordano, M.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, IEEE Photon. Technol. Lett. 17, 1495 (2005).
[CrossRef]

Huang, Z.

Iadicicco, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, IEEE Photon. Technol. Lett. 17, 1495 (2005).
[CrossRef]

Jackson, D. A.

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, J. Lightwave Technol. 15, 779 (1997).
[CrossRef]

Jeong, M. Y.

S. M. Lee, S. S. Saini, and M. Y. Jeong, IEEE Photon. Technol. Lett. 22, 1431 (2010).
[CrossRef]

Jiang, B.

Jiang, W.

Kawashima, H.

T. Mizunami, H. Tatehata, and H. Kawashima, Meas. Sci. Technol. 12, 914 (2001).
[CrossRef]

Kersey, A. D.

T. A. Berkoff and A. D. Kersey, IEEE Photon. Technol. Lett. 8, 1677 (1996).
[CrossRef]

Khijwania, S. K.

Lee, S. B.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, IEEE Photon. Technol. Lett. 17, 1253 (2005).
[CrossRef]

Lee, S. M.

S. M. Lee, S. S. Saini, and M. Y. Jeong, IEEE Photon. Technol. Lett. 22, 1431 (2010).
[CrossRef]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, IEEE Photon. Technol. Lett. 17, 1253 (2005).
[CrossRef]

Marcuse, D.

Mescia, L.

Mizunami, T.

T. Mizunami, H. Tatehata, and H. Kawashima, Meas. Sci. Technol. 12, 914 (2001).
[CrossRef]

Palmisano, T.

Prudenzano, F.

Qin, C.

Rao, Y. J.

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, J. Lightwave Technol. 15, 779 (1997).
[CrossRef]

Rauf, A.

Renner, H.

H. Renner, J. Lightwave Technol. 10, 544 (1992).
[CrossRef]

Righini, G. C.

Saini, S. S.

S. M. Lee, S. S. Saini, and M. Y. Jeong, IEEE Photon. Technol. Lett. 22, 1431 (2010).
[CrossRef]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, IEEE Photon. Technol. Lett. 17, 1253 (2005).
[CrossRef]

Santos, J. L.

Shao, L. Y.

Song, D.

Z. Wei, D. Song, Q. Zhao, and H. L. Cui, IEEE Sens. J. 8, 1615 (2008).
[CrossRef]

Surico, M.

Tam, H. Y.

Tatehata, H.

T. Mizunami, H. Tatehata, and H. Kawashima, Meas. Sci. Technol. 12, 914 (2001).
[CrossRef]

Webb, D. J.

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, J. Lightwave Technol. 15, 779 (1997).
[CrossRef]

Wei, Z.

Z. Wei, D. Song, Q. Zhao, and H. L. Cui, IEEE Sens. J. 8, 1615 (2008).
[CrossRef]

Zhang, L.

K. Zhou, X. Chen, L. Zhang, and I. Bennion, Meas. Sci. Technol. 17, 1140 (2006).
[CrossRef]

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, J. Lightwave Technol. 15, 779 (1997).
[CrossRef]

Zhao, J.

Zhao, Q.

Z. Wei, D. Song, Q. Zhao, and H. L. Cui, IEEE Sens. J. 8, 1615 (2008).
[CrossRef]

Zhou, K.

K. Zhou, X. Chen, L. Zhang, and I. Bennion, Meas. Sci. Technol. 17, 1140 (2006).
[CrossRef]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (4)

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, IEEE Photon. Technol. Lett. 17, 1253 (2005).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, IEEE Photon. Technol. Lett. 17, 1495 (2005).
[CrossRef]

S. M. Lee, S. S. Saini, and M. Y. Jeong, IEEE Photon. Technol. Lett. 22, 1431 (2010).
[CrossRef]

T. A. Berkoff and A. D. Kersey, IEEE Photon. Technol. Lett. 8, 1677 (1996).
[CrossRef]

IEEE Sens. J. (1)

Z. Wei, D. Song, Q. Zhao, and H. L. Cui, IEEE Sens. J. 8, 1615 (2008).
[CrossRef]

J. Lightwave Technol. (3)

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, J. Lightwave Technol. 15, 779 (1997).
[CrossRef]

H. Renner, J. Lightwave Technol. 10, 544 (1992).
[CrossRef]

H. Y. Au, S. K. Khijwania, H. Y. Fu, W. H. Chung, and H. Y. Tam, J. Lightwave Technol. 29, 1714 (2011).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (2)

T. Mizunami, H. Tatehata, and H. Kawashima, Meas. Sci. Technol. 12, 914 (2001).
[CrossRef]

K. Zhou, X. Chen, L. Zhang, and I. Bennion, Meas. Sci. Technol. 17, 1140 (2006).
[CrossRef]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup for bend angle measurement.

Fig. 2.
Fig. 2.

Sensing part of the proposed method.

Fig. 3.
Fig. 3.

Comparison of the power variation curves versus bend angle, when the etched diameter is 99 μm.

Fig. 4.
Fig. 4.

Power variation response of the bend sensor including curve fitting results, when immersed in IMG.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

2αB=12(πγ3R)1/2κ2V2K12(γa)exp(2γ3R3βo2),
γ2=βo2k2n22,κ2=k2n12βo2,V=ak(n12n22)1/2.
2αBC=2αB2(Z3Z2)1/2(Z3+Z2)(Z3Z2)cos(2Θ0),
Zq=(2k2n22/R)2/3Xq(b,0)k2nq2(1+2b/R)βo2,q=2,3,Θ0=23[X2(b,0)]2/3+π4=γ3R3k2n22(RcR1)3/2,Rc=2k2n22b/γ2.
4bγ3πRRc(RcR1)3/2={2m1/2,maximum2m3/2,minimum,
P(s)=Poexp(2αs),
λB=2neffΛ,
P=PoRBexp(4αBCs),
ΔP=PoRB[1exp(4αBCs)].
ΔP=0.070+7.387|θ|1/2exp(51.227|θ|),
ΔP=92.89292.707exp[0.303|θ|1/2exp(36.385|θ|)].

Metrics