Abstract

We use the optogalvanic method to calculate the concentration of rubidium ions produced by photoionization in a Rb diode-pumped alkali laser gain medium. With bias voltage added across the electrodes of a rubidium hollow cathode lamp, the measured optogalvanic current is 2.3×107A. Further study shows that the rubidium ion concentration is proportional to the pump intensity, and the drift velocity of rubidium ions is proportional to the bias voltage. When the photoionization process reaches dynamic equilibrium, the rubidium ion concentration will not increase with growing rubidium atom density. The calculated rubidium ion concentration is 1.5×105106 according to the experiment, and the ionization degree is less than 2.4×107.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zweiback, A. Komashko, and W. F. Krupke, Proc. SPIE 7581, 75810G (2010).
    [CrossRef]
  2. M. Rodriguez, “Go with the flow: novel diode-pumped alkali laser achieves first light,” http://www.wpafb.af.mil/news/story.asp?id=123212683 .
  3. A. V. Bogachev, S. G. Garanim, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 2(2012).
  4. W. F. Krupke, Proc. SPIE 7005, 700521 (2008).
    [CrossRef]
  5. D. L. Carroll, in 42nd AIAA Plasmadynamics and Laser Conference (American Institute of Aeronautics and Astronautics, 2011), paper 3102.
  6. R. J. Knize, B. V. Zhdanov, and M. K. Shaffer, Opt. Express 19, 7894 (2011).
    [CrossRef]
  7. Y.-F. Shen, K. Dai, B.-X. Mu, S.-Y. Wang, and X.-H. Cui, Chin. Phys. Lett 22, 11 (2005).
    [CrossRef]
  8. J. P. Hermann and J. J. Wynne, Opt. Lett. 5, 236 (1980).
    [CrossRef]
  9. L. Barbier and M. Cheret, J. Phys. B 20, 1229 (1987).
    [CrossRef]
  10. M. A. Mahmoud, Y. E. E. Gamal, and H. A. A. El-Rahman, J. Quant. Spectrosc. Radiat. Transfer 102, 241 (2006).
    [CrossRef]
  11. X. Xu and D.-C. Zhu, The Gas Discharge Physics (Fudan University, 1996).

2012

A. V. Bogachev, S. G. Garanim, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 2(2012).

2011

2010

J. Zweiback, A. Komashko, and W. F. Krupke, Proc. SPIE 7581, 75810G (2010).
[CrossRef]

2008

W. F. Krupke, Proc. SPIE 7005, 700521 (2008).
[CrossRef]

2006

M. A. Mahmoud, Y. E. E. Gamal, and H. A. A. El-Rahman, J. Quant. Spectrosc. Radiat. Transfer 102, 241 (2006).
[CrossRef]

2005

Y.-F. Shen, K. Dai, B.-X. Mu, S.-Y. Wang, and X.-H. Cui, Chin. Phys. Lett 22, 11 (2005).
[CrossRef]

1987

L. Barbier and M. Cheret, J. Phys. B 20, 1229 (1987).
[CrossRef]

1980

Barbier, L.

L. Barbier and M. Cheret, J. Phys. B 20, 1229 (1987).
[CrossRef]

Bogachev, A. V.

A. V. Bogachev, S. G. Garanim, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 2(2012).

Carroll, D. L.

D. L. Carroll, in 42nd AIAA Plasmadynamics and Laser Conference (American Institute of Aeronautics and Astronautics, 2011), paper 3102.

Cheret, M.

L. Barbier and M. Cheret, J. Phys. B 20, 1229 (1987).
[CrossRef]

Cui, X.-H.

Y.-F. Shen, K. Dai, B.-X. Mu, S.-Y. Wang, and X.-H. Cui, Chin. Phys. Lett 22, 11 (2005).
[CrossRef]

Dai, K.

Y.-F. Shen, K. Dai, B.-X. Mu, S.-Y. Wang, and X.-H. Cui, Chin. Phys. Lett 22, 11 (2005).
[CrossRef]

Dudov, A. M.

A. V. Bogachev, S. G. Garanim, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 2(2012).

El-Rahman, H. A. A.

M. A. Mahmoud, Y. E. E. Gamal, and H. A. A. El-Rahman, J. Quant. Spectrosc. Radiat. Transfer 102, 241 (2006).
[CrossRef]

Eroshenko, V. A.

A. V. Bogachev, S. G. Garanim, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 2(2012).

Gamal, Y. E. E.

M. A. Mahmoud, Y. E. E. Gamal, and H. A. A. El-Rahman, J. Quant. Spectrosc. Radiat. Transfer 102, 241 (2006).
[CrossRef]

Garanim, S. G.

A. V. Bogachev, S. G. Garanim, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 2(2012).

Hermann, J. P.

Knize, R. J.

Komashko, A.

J. Zweiback, A. Komashko, and W. F. Krupke, Proc. SPIE 7581, 75810G (2010).
[CrossRef]

Krupke, W. F.

J. Zweiback, A. Komashko, and W. F. Krupke, Proc. SPIE 7581, 75810G (2010).
[CrossRef]

W. F. Krupke, Proc. SPIE 7005, 700521 (2008).
[CrossRef]

Kulikov, S. M.

A. V. Bogachev, S. G. Garanim, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 2(2012).

Mahmoud, M. A.

M. A. Mahmoud, Y. E. E. Gamal, and H. A. A. El-Rahman, J. Quant. Spectrosc. Radiat. Transfer 102, 241 (2006).
[CrossRef]

Mikaelian, G. T.

A. V. Bogachev, S. G. Garanim, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 2(2012).

Mu, B.-X.

Y.-F. Shen, K. Dai, B.-X. Mu, S.-Y. Wang, and X.-H. Cui, Chin. Phys. Lett 22, 11 (2005).
[CrossRef]

Panarin, V. A.

A. V. Bogachev, S. G. Garanim, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 2(2012).

Pautov, V. O.

A. V. Bogachev, S. G. Garanim, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 2(2012).

Rus, A. V.

A. V. Bogachev, S. G. Garanim, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 2(2012).

Shaffer, M. K.

Shen, Y.-F.

Y.-F. Shen, K. Dai, B.-X. Mu, S.-Y. Wang, and X.-H. Cui, Chin. Phys. Lett 22, 11 (2005).
[CrossRef]

Sukharev, S. A.

A. V. Bogachev, S. G. Garanim, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 2(2012).

Wang, S.-Y.

Y.-F. Shen, K. Dai, B.-X. Mu, S.-Y. Wang, and X.-H. Cui, Chin. Phys. Lett 22, 11 (2005).
[CrossRef]

Wynne, J. J.

Xu, X.

X. Xu and D.-C. Zhu, The Gas Discharge Physics (Fudan University, 1996).

Zhdanov, B. V.

Zhu, D.-C.

X. Xu and D.-C. Zhu, The Gas Discharge Physics (Fudan University, 1996).

Zweiback, J.

J. Zweiback, A. Komashko, and W. F. Krupke, Proc. SPIE 7581, 75810G (2010).
[CrossRef]

Chin. Phys. Lett

Y.-F. Shen, K. Dai, B.-X. Mu, S.-Y. Wang, and X.-H. Cui, Chin. Phys. Lett 22, 11 (2005).
[CrossRef]

J. Phys. B

L. Barbier and M. Cheret, J. Phys. B 20, 1229 (1987).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

M. A. Mahmoud, Y. E. E. Gamal, and H. A. A. El-Rahman, J. Quant. Spectrosc. Radiat. Transfer 102, 241 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

J. Zweiback, A. Komashko, and W. F. Krupke, Proc. SPIE 7581, 75810G (2010).
[CrossRef]

W. F. Krupke, Proc. SPIE 7005, 700521 (2008).
[CrossRef]

Quantum Electron.

A. V. Bogachev, S. G. Garanim, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 2(2012).

Other

D. L. Carroll, in 42nd AIAA Plasmadynamics and Laser Conference (American Institute of Aeronautics and Astronautics, 2011), paper 3102.

M. Rodriguez, “Go with the flow: novel diode-pumped alkali laser achieves first light,” http://www.wpafb.af.mil/news/story.asp?id=123212683 .

X. Xu and D.-C. Zhu, The Gas Discharge Physics (Fudan University, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Possible ionization channels in a Rb DPAL.

Fig. 2.
Fig. 2.

Experimental schematic diagram.

Fig. 3.
Fig. 3.

Pump light spectrum narrowed by the VBG.

Fig. 4.
Fig. 4.

Relation between bias voltage and optogalvanic signal: (a) no buffer gas and (b) filled with 7 Torr Ar.

Fig. 5.
Fig. 5.

Relation between pump light intensity and optogalvanic signal: (a) no buffer gas and (b) filled with 7 Torr Ar.

Fig. 6.
Fig. 6.

Relation between the Rb atom concentration and the optogalvanic signal: (a) no buffer gas and (b) filled with 7 Torr Ar.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n=I/ZevpS.

Metrics