Abstract

We studied resonant laser interaction with Rb atoms confined to the interstitial cavities of a random porous glass. Due to diffusive light propagation, the effect of atomic absorption on the light scattered by the sample is almost entirely compensated by atomic fluorescence at low atomic densities. For higher densities, radiation trapping increases the probability of nonradiative decay via atom-wall collisions. A simple connection of the fluorescence/absorption yield to the sample porosity is given.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, Phys. Rev. Lett. 97, 023603 (2006).
    [CrossRef]
  2. A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, Phys. Rev. A 81, 053825 (2010).
    [CrossRef]
  3. W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, Nat. Photonics 1, 331 (2007).
    [CrossRef]
  4. S. Briaudeau, D. Bloch, and M. Ducloy, Phys. Rev. A 59, 3723 (1999).
    [CrossRef]
  5. G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, Europhys. Lett. 63, 35 (2003).
    [CrossRef]
  6. S. Knappe, L. Hollberg, and J. Kitching, Opt. Lett. 29, 388 (2004).
    [CrossRef]
  7. L. Lenci, A. Lezama, and H. Failache, Opt. Lett. 34, 425 (2009).
    [CrossRef]
  8. H. Kübler, J. P. Shaffer, T. Baluktsian, R. Löw, and T. Pfau, Nat. Photonics 4, 112 (2010).
    [CrossRef]
  9. P. Ballin, “Confinement tridimensionnel d’une vapeur de césium dans une opale de nanobilles,” Ph.D. thesis (University of Paris, 2012), p. 13.
  10. D. B. Cassidy, W. J. Bromley, M. L. C. Cota, T. H. Hisakado, H. W. K. Tom, and A. P. Mills, Phys. Rev. Lett. 106, 023401 (2011).
    [CrossRef]
  11. T. Svensson and Z. Shen, Appl. Phys. Lett. 96, 021107 (2010).
    [CrossRef]
  12. T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, Phys. Rev. Lett. 107, 143901 (2011).
    [CrossRef]
  13. M. Danos and S. Geschwind, Phys. Rev. 91, 1159(1953).
    [CrossRef]
  14. T. Svensson, E. Adolfsson, M. Burresi, R. Savo, C. T. Xu, D. S. Wiersma, and S. Svanberg, “Pore size assessment based on wall collision broadening of spectral lines of confined gas: experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes,” Appl. Phys. B, doi: 10.1007/s00340–012–5011-z (2012).
    [CrossRef]
  15. A. Yariv, Quantum Electronics (Wiley, 1989).
  16. See supplemental material for details: http://arxiv.org/abs/1210.0846 .
  17. A. Burchianti, A. Bogi, C. Marinelli, C. Maibohm, E. Mariotti, and L. Moi, Phys. Rev. Lett. 97, 157404 (2006).
    [CrossRef]
  18. D. A. Steck, “Rubidium 87 d line data” (2010). Unpublished, available on-line at http://steck.us/alkalidata .

2011

D. B. Cassidy, W. J. Bromley, M. L. C. Cota, T. H. Hisakado, H. W. K. Tom, and A. P. Mills, Phys. Rev. Lett. 106, 023401 (2011).
[CrossRef]

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, Phys. Rev. Lett. 107, 143901 (2011).
[CrossRef]

2010

H. Kübler, J. P. Shaffer, T. Baluktsian, R. Löw, and T. Pfau, Nat. Photonics 4, 112 (2010).
[CrossRef]

T. Svensson and Z. Shen, Appl. Phys. Lett. 96, 021107 (2010).
[CrossRef]

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, Phys. Rev. A 81, 053825 (2010).
[CrossRef]

2009

2007

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, Nat. Photonics 1, 331 (2007).
[CrossRef]

2006

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef]

A. Burchianti, A. Bogi, C. Marinelli, C. Maibohm, E. Mariotti, and L. Moi, Phys. Rev. Lett. 97, 157404 (2006).
[CrossRef]

2004

2003

G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, Europhys. Lett. 63, 35 (2003).
[CrossRef]

1999

S. Briaudeau, D. Bloch, and M. Ducloy, Phys. Rev. A 59, 3723 (1999).
[CrossRef]

1953

M. Danos and S. Geschwind, Phys. Rev. 91, 1159(1953).
[CrossRef]

Adolfsson, E.

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, Phys. Rev. Lett. 107, 143901 (2011).
[CrossRef]

T. Svensson, E. Adolfsson, M. Burresi, R. Savo, C. T. Xu, D. S. Wiersma, and S. Svanberg, “Pore size assessment based on wall collision broadening of spectral lines of confined gas: experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes,” Appl. Phys. B, doi: 10.1007/s00340–012–5011-z (2012).
[CrossRef]

Ballin, P.

P. Ballin, “Confinement tridimensionnel d’une vapeur de césium dans une opale de nanobilles,” Ph.D. thesis (University of Paris, 2012), p. 13.

Baluktsian, T.

H. Kübler, J. P. Shaffer, T. Baluktsian, R. Löw, and T. Pfau, Nat. Photonics 4, 112 (2010).
[CrossRef]

Bhagwat, A. R.

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, Phys. Rev. A 81, 053825 (2010).
[CrossRef]

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef]

Bloch, D.

G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, Europhys. Lett. 63, 35 (2003).
[CrossRef]

S. Briaudeau, D. Bloch, and M. Ducloy, Phys. Rev. A 59, 3723 (1999).
[CrossRef]

Bogi, A.

A. Burchianti, A. Bogi, C. Marinelli, C. Maibohm, E. Mariotti, and L. Moi, Phys. Rev. Lett. 97, 157404 (2006).
[CrossRef]

Briaudeau, S.

S. Briaudeau, D. Bloch, and M. Ducloy, Phys. Rev. A 59, 3723 (1999).
[CrossRef]

Bromley, W. J.

D. B. Cassidy, W. J. Bromley, M. L. C. Cota, T. H. Hisakado, H. W. K. Tom, and A. P. Mills, Phys. Rev. Lett. 106, 023401 (2011).
[CrossRef]

Burchianti, A.

A. Burchianti, A. Bogi, C. Marinelli, C. Maibohm, E. Mariotti, and L. Moi, Phys. Rev. Lett. 97, 157404 (2006).
[CrossRef]

Burresi, M.

T. Svensson, E. Adolfsson, M. Burresi, R. Savo, C. T. Xu, D. S. Wiersma, and S. Svanberg, “Pore size assessment based on wall collision broadening of spectral lines of confined gas: experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes,” Appl. Phys. B, doi: 10.1007/s00340–012–5011-z (2012).
[CrossRef]

Cassidy, D. B.

D. B. Cassidy, W. J. Bromley, M. L. C. Cota, T. H. Hisakado, H. W. K. Tom, and A. P. Mills, Phys. Rev. Lett. 106, 023401 (2011).
[CrossRef]

Conkey, D. B.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, Nat. Photonics 1, 331 (2007).
[CrossRef]

Cota, M. L. C.

D. B. Cassidy, W. J. Bromley, M. L. C. Cota, T. H. Hisakado, H. W. K. Tom, and A. P. Mills, Phys. Rev. Lett. 106, 023401 (2011).
[CrossRef]

Danos, M.

M. Danos and S. Geschwind, Phys. Rev. 91, 1159(1953).
[CrossRef]

Ducloy, M.

G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, Europhys. Lett. 63, 35 (2003).
[CrossRef]

S. Briaudeau, D. Bloch, and M. Ducloy, Phys. Rev. A 59, 3723 (1999).
[CrossRef]

Dutier, G.

G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, Europhys. Lett. 63, 35 (2003).
[CrossRef]

Failache, H.

Gaeta, A. L.

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, Phys. Rev. A 81, 053825 (2010).
[CrossRef]

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef]

Geschwind, S.

M. Danos and S. Geschwind, Phys. Rev. 91, 1159(1953).
[CrossRef]

Ghosh, S.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef]

Goh, S.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef]

Hawkins, A. R.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, Nat. Photonics 1, 331 (2007).
[CrossRef]

Hisakado, T. H.

D. B. Cassidy, W. J. Bromley, M. L. C. Cota, T. H. Hisakado, H. W. K. Tom, and A. P. Mills, Phys. Rev. Lett. 106, 023401 (2011).
[CrossRef]

Hollberg, L.

Kirby, B. J.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef]

Kitching, J.

Knappe, S.

Kübler, H.

H. Kübler, J. P. Shaffer, T. Baluktsian, R. Löw, and T. Pfau, Nat. Photonics 4, 112 (2010).
[CrossRef]

Lenci, L.

Lewander, M.

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, Phys. Rev. Lett. 107, 143901 (2011).
[CrossRef]

Lezama, A.

Londero, P.

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, Phys. Rev. A 81, 053825 (2010).
[CrossRef]

Löw, R.

H. Kübler, J. P. Shaffer, T. Baluktsian, R. Löw, and T. Pfau, Nat. Photonics 4, 112 (2010).
[CrossRef]

Maibohm, C.

A. Burchianti, A. Bogi, C. Marinelli, C. Maibohm, E. Mariotti, and L. Moi, Phys. Rev. Lett. 97, 157404 (2006).
[CrossRef]

Marinelli, C.

A. Burchianti, A. Bogi, C. Marinelli, C. Maibohm, E. Mariotti, and L. Moi, Phys. Rev. Lett. 97, 157404 (2006).
[CrossRef]

Mariotti, E.

A. Burchianti, A. Bogi, C. Marinelli, C. Maibohm, E. Mariotti, and L. Moi, Phys. Rev. Lett. 97, 157404 (2006).
[CrossRef]

Mills, A. P.

D. B. Cassidy, W. J. Bromley, M. L. C. Cota, T. H. Hisakado, H. W. K. Tom, and A. P. Mills, Phys. Rev. Lett. 106, 023401 (2011).
[CrossRef]

Moi, L.

A. Burchianti, A. Bogi, C. Marinelli, C. Maibohm, E. Mariotti, and L. Moi, Phys. Rev. Lett. 97, 157404 (2006).
[CrossRef]

Papoyan, A.

G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, Europhys. Lett. 63, 35 (2003).
[CrossRef]

Pfau, T.

H. Kübler, J. P. Shaffer, T. Baluktsian, R. Löw, and T. Pfau, Nat. Photonics 4, 112 (2010).
[CrossRef]

Renshaw, C. K.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef]

Saltiel, S.

G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, Europhys. Lett. 63, 35 (2003).
[CrossRef]

Sarkisyan, D.

G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, Europhys. Lett. 63, 35 (2003).
[CrossRef]

Savo, R.

T. Svensson, E. Adolfsson, M. Burresi, R. Savo, C. T. Xu, D. S. Wiersma, and S. Svanberg, “Pore size assessment based on wall collision broadening of spectral lines of confined gas: experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes,” Appl. Phys. B, doi: 10.1007/s00340–012–5011-z (2012).
[CrossRef]

Schmidt, H.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, Nat. Photonics 1, 331 (2007).
[CrossRef]

Shaffer, J. P.

H. Kübler, J. P. Shaffer, T. Baluktsian, R. Löw, and T. Pfau, Nat. Photonics 4, 112 (2010).
[CrossRef]

Shen, Z.

T. Svensson and Z. Shen, Appl. Phys. Lett. 96, 021107 (2010).
[CrossRef]

Slepkov, A. D.

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, Phys. Rev. A 81, 053825 (2010).
[CrossRef]

Steck, D. A.

D. A. Steck, “Rubidium 87 d line data” (2010). Unpublished, available on-line at http://steck.us/alkalidata .

Svanberg, S.

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, Phys. Rev. Lett. 107, 143901 (2011).
[CrossRef]

T. Svensson, E. Adolfsson, M. Burresi, R. Savo, C. T. Xu, D. S. Wiersma, and S. Svanberg, “Pore size assessment based on wall collision broadening of spectral lines of confined gas: experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes,” Appl. Phys. B, doi: 10.1007/s00340–012–5011-z (2012).
[CrossRef]

Svensson, T.

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, Phys. Rev. Lett. 107, 143901 (2011).
[CrossRef]

T. Svensson and Z. Shen, Appl. Phys. Lett. 96, 021107 (2010).
[CrossRef]

T. Svensson, E. Adolfsson, M. Burresi, R. Savo, C. T. Xu, D. S. Wiersma, and S. Svanberg, “Pore size assessment based on wall collision broadening of spectral lines of confined gas: experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes,” Appl. Phys. B, doi: 10.1007/s00340–012–5011-z (2012).
[CrossRef]

Tom, H. W. K.

D. B. Cassidy, W. J. Bromley, M. L. C. Cota, T. H. Hisakado, H. W. K. Tom, and A. P. Mills, Phys. Rev. Lett. 106, 023401 (2011).
[CrossRef]

Venkataraman, V.

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, Phys. Rev. A 81, 053825 (2010).
[CrossRef]

Wiersma, D. S.

T. Svensson, E. Adolfsson, M. Burresi, R. Savo, C. T. Xu, D. S. Wiersma, and S. Svanberg, “Pore size assessment based on wall collision broadening of spectral lines of confined gas: experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes,” Appl. Phys. B, doi: 10.1007/s00340–012–5011-z (2012).
[CrossRef]

Wu, B.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, Nat. Photonics 1, 331 (2007).
[CrossRef]

Xu, C. T.

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, Phys. Rev. Lett. 107, 143901 (2011).
[CrossRef]

T. Svensson, E. Adolfsson, M. Burresi, R. Savo, C. T. Xu, D. S. Wiersma, and S. Svanberg, “Pore size assessment based on wall collision broadening of spectral lines of confined gas: experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes,” Appl. Phys. B, doi: 10.1007/s00340–012–5011-z (2012).
[CrossRef]

Yang, W.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, Nat. Photonics 1, 331 (2007).
[CrossRef]

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, 1989).

Yarovitski, A.

G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, Europhys. Lett. 63, 35 (2003).
[CrossRef]

Yin, D.

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, Nat. Photonics 1, 331 (2007).
[CrossRef]

Appl. Phys. Lett.

T. Svensson and Z. Shen, Appl. Phys. Lett. 96, 021107 (2010).
[CrossRef]

Europhys. Lett.

G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, Europhys. Lett. 63, 35 (2003).
[CrossRef]

Nat. Photonics

H. Kübler, J. P. Shaffer, T. Baluktsian, R. Löw, and T. Pfau, Nat. Photonics 4, 112 (2010).
[CrossRef]

W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, Nat. Photonics 1, 331 (2007).
[CrossRef]

Opt. Lett.

Phys. Rev.

M. Danos and S. Geschwind, Phys. Rev. 91, 1159(1953).
[CrossRef]

Phys. Rev. A

S. Briaudeau, D. Bloch, and M. Ducloy, Phys. Rev. A 59, 3723 (1999).
[CrossRef]

A. D. Slepkov, A. R. Bhagwat, V. Venkataraman, P. Londero, and A. L. Gaeta, Phys. Rev. A 81, 053825 (2010).
[CrossRef]

Phys. Rev. Lett.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef]

T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, Phys. Rev. Lett. 107, 143901 (2011).
[CrossRef]

A. Burchianti, A. Bogi, C. Marinelli, C. Maibohm, E. Mariotti, and L. Moi, Phys. Rev. Lett. 97, 157404 (2006).
[CrossRef]

D. B. Cassidy, W. J. Bromley, M. L. C. Cota, T. H. Hisakado, H. W. K. Tom, and A. P. Mills, Phys. Rev. Lett. 106, 023401 (2011).
[CrossRef]

Other

D. A. Steck, “Rubidium 87 d line data” (2010). Unpublished, available on-line at http://steck.us/alkalidata .

T. Svensson, E. Adolfsson, M. Burresi, R. Savo, C. T. Xu, D. S. Wiersma, and S. Svanberg, “Pore size assessment based on wall collision broadening of spectral lines of confined gas: experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes,” Appl. Phys. B, doi: 10.1007/s00340–012–5011-z (2012).
[CrossRef]

A. Yariv, Quantum Electronics (Wiley, 1989).

See supplemental material for details: http://arxiv.org/abs/1210.0846 .

P. Ballin, “Confinement tridimensionnel d’une vapeur de césium dans une opale de nanobilles,” Ph.D. thesis (University of Paris, 2012), p. 13.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Photon count rate versus time and laser detuning for a sudden laser power change, T=152°C, arrows: transition line-centers. (b) Photon count transients at several temperatures for laser frequency at the center of the Rb85 F=3F line. Solid: off-resonance transient. (c) Fluorescence decay-times for the Rb85 F=2F line. Circles, porous medium; Squares, vapor cell; Inset, experimental setup; DL, diode laser; P, polarizer; EOM, electro-optical modulator; SPCM, single photon counting module. Atomic vapor densities are estimated from temperature according to [18].

Fig. 2.
Fig. 2.

Relative transmission (solid), absorption (dotted) and fluorescence (dashed) as a function of laser detuning relative to the Rb87 F=2F=1 transition for two temperatures. Atomic vapor densities (N) are estimated from temperature according to [18]. The traces are normalized at 3.4 GHz, small (10%) laser power variations occur over the scan.

Fig. 3.
Fig. 3.

Measured fluorescence/absorption energy ratio β/α as a function of fluorescence lifetime. Symbols refer to different choices of the sample surface imaged on the detector. Dashed: linear fit for all points.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R=η[1+ττ(b1)b],

Metrics