Abstract

A carbon nanotube cryogenic radiometer (CNCR) has been fabricated for electrical-substitution optical power measurements. The CNCR employs vertically aligned multiwall carbon nanotube arrays (VANTAs) as the absorber, heater, and thermistor, with a micromachined silicon substrate as the weak thermal link. Compared to conventional cryogenic radiometers, the CNCR is simpler, more easily reproduced and disseminated, orders of magnitude faster, and can operate over a wide range of wavelengths without the need for a receiver cavity. We describe initial characterization results of the radiometer at 3.9 K, comparing electrical measurements and fiber-coupled optical measurements from 50 μW to 1.5 mW at the wavelength of 1550 nm. We find the response to input electrical and optical power is equivalent to within our measurement uncertainty, which is currently limited by the experimental setup (large temperature fluctuations of the cold stage) rather than the device itself. With improvements in the temperature stability, the performance of the CNCR should be limited only by our ability to measure the reflectance of the optical absorber VANTA.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Martin, N. P. Fox, and P. J. Key, Metrologia 21, 147 (1985).
    [CrossRef]
  2. Z. Yang, L. Ci, J. A. Bur, S. Lin, and P. M. Ajayan, Nano Lett. 8, 446 (2008).
    [CrossRef]
  3. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, Proc. Natl. Acad. Sci. USA 106, 6044 (2009).
    [CrossRef]
  4. J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, Nano Lett. 10, 3261 (2010).
    [CrossRef]
  5. C. J. Chunnilall, J. H. Lehman, E. Theocharous, and A. Sanders, Carbon 50, 5348 (2012).
    [CrossRef]
  6. M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, Science 312, 413 (2006).
    [CrossRef]
  7. A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Baba, M. Tanemura, and G. Oomi, Carbon 49, 294 (2011).
    [CrossRef]
  8. Z. Khan, S. Husain, and M. Husain, Current Nanosci. 6, 626 (2010).
    [CrossRef]
  9. J. C. Mather, Appl. Opt. 21, 1125 (1982).
    [CrossRef]

2012 (1)

C. J. Chunnilall, J. H. Lehman, E. Theocharous, and A. Sanders, Carbon 50, 5348 (2012).
[CrossRef]

2011 (1)

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Baba, M. Tanemura, and G. Oomi, Carbon 49, 294 (2011).
[CrossRef]

2010 (2)

Z. Khan, S. Husain, and M. Husain, Current Nanosci. 6, 626 (2010).
[CrossRef]

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, Nano Lett. 10, 3261 (2010).
[CrossRef]

2009 (1)

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, Proc. Natl. Acad. Sci. USA 106, 6044 (2009).
[CrossRef]

2008 (1)

Z. Yang, L. Ci, J. A. Bur, S. Lin, and P. M. Ajayan, Nano Lett. 8, 446 (2008).
[CrossRef]

2006 (1)

M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, Science 312, 413 (2006).
[CrossRef]

1985 (1)

J. E. Martin, N. P. Fox, and P. J. Key, Metrologia 21, 147 (1985).
[CrossRef]

1982 (1)

Ajayan, P. M.

Z. Yang, L. Ci, J. A. Bur, S. Lin, and P. M. Ajayan, Nano Lett. 8, 446 (2008).
[CrossRef]

Akoshima, M.

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Baba, M. Tanemura, and G. Oomi, Carbon 49, 294 (2011).
[CrossRef]

Baba, T.

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Baba, M. Tanemura, and G. Oomi, Carbon 49, 294 (2011).
[CrossRef]

Borondics, F.

M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, Science 312, 413 (2006).
[CrossRef]

Bur, J. A.

Z. Yang, L. Ci, J. A. Bur, S. Lin, and P. M. Ajayan, Nano Lett. 8, 446 (2008).
[CrossRef]

Chunnilall, C. J.

C. J. Chunnilall, J. H. Lehman, E. Theocharous, and A. Sanders, Carbon 50, 5348 (2012).
[CrossRef]

Ci, L.

Z. Yang, L. Ci, J. A. Bur, S. Lin, and P. M. Ajayan, Nano Lett. 8, 446 (2008).
[CrossRef]

Fox, N. P.

J. E. Martin, N. P. Fox, and P. J. Key, Metrologia 21, 147 (1985).
[CrossRef]

Futaba, D. N.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, Proc. Natl. Acad. Sci. USA 106, 6044 (2009).
[CrossRef]

Gunjishima, I.

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Baba, M. Tanemura, and G. Oomi, Carbon 49, 294 (2011).
[CrossRef]

Haddon, R. C.

M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, Science 312, 413 (2006).
[CrossRef]

Hanssen, L.

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, Nano Lett. 10, 3261 (2010).
[CrossRef]

Hata, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, Proc. Natl. Acad. Sci. USA 106, 6044 (2009).
[CrossRef]

Hayamizu, Y.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, Proc. Natl. Acad. Sci. USA 106, 6044 (2009).
[CrossRef]

Husain, M.

Z. Khan, S. Husain, and M. Husain, Current Nanosci. 6, 626 (2010).
[CrossRef]

Husain, S.

Z. Khan, S. Husain, and M. Husain, Current Nanosci. 6, 626 (2010).
[CrossRef]

Inoue, T.

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Baba, M. Tanemura, and G. Oomi, Carbon 49, 294 (2011).
[CrossRef]

Ishii, J.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, Proc. Natl. Acad. Sci. USA 106, 6044 (2009).
[CrossRef]

Itkis, M. E.

M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, Science 312, 413 (2006).
[CrossRef]

Jensen, C.

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, Nano Lett. 10, 3261 (2010).
[CrossRef]

Key, P. J.

J. E. Martin, N. P. Fox, and P. J. Key, Metrologia 21, 147 (1985).
[CrossRef]

Khan, Z.

Z. Khan, S. Husain, and M. Husain, Current Nanosci. 6, 626 (2010).
[CrossRef]

Kishida, H.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, Proc. Natl. Acad. Sci. USA 106, 6044 (2009).
[CrossRef]

Lehman, J.

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, Nano Lett. 10, 3261 (2010).
[CrossRef]

Lehman, J. H.

C. J. Chunnilall, J. H. Lehman, E. Theocharous, and A. Sanders, Carbon 50, 5348 (2012).
[CrossRef]

Lin, S.

Z. Yang, L. Ci, J. A. Bur, S. Lin, and P. M. Ajayan, Nano Lett. 8, 446 (2008).
[CrossRef]

Martin, J. E.

J. E. Martin, N. P. Fox, and P. J. Key, Metrologia 21, 147 (1985).
[CrossRef]

Mather, J. C.

Miyagawa, H.

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Baba, M. Tanemura, and G. Oomi, Carbon 49, 294 (2011).
[CrossRef]

Mizuno, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, Proc. Natl. Acad. Sci. USA 106, 6044 (2009).
[CrossRef]

Nakano, T.

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Baba, M. Tanemura, and G. Oomi, Carbon 49, 294 (2011).
[CrossRef]

Okamoto, A.

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Baba, M. Tanemura, and G. Oomi, Carbon 49, 294 (2011).
[CrossRef]

Oomi, G.

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Baba, M. Tanemura, and G. Oomi, Carbon 49, 294 (2011).
[CrossRef]

Sanders, A.

C. J. Chunnilall, J. H. Lehman, E. Theocharous, and A. Sanders, Carbon 50, 5348 (2012).
[CrossRef]

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, Nano Lett. 10, 3261 (2010).
[CrossRef]

Tanemura, M.

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Baba, M. Tanemura, and G. Oomi, Carbon 49, 294 (2011).
[CrossRef]

Theocharous, E.

C. J. Chunnilall, J. H. Lehman, E. Theocharous, and A. Sanders, Carbon 50, 5348 (2012).
[CrossRef]

Wilthan, B.

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, Nano Lett. 10, 3261 (2010).
[CrossRef]

Yang, Z.

Z. Yang, L. Ci, J. A. Bur, S. Lin, and P. M. Ajayan, Nano Lett. 8, 446 (2008).
[CrossRef]

Yasuda, S.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, Proc. Natl. Acad. Sci. USA 106, 6044 (2009).
[CrossRef]

Yu, A.

M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, Science 312, 413 (2006).
[CrossRef]

Yumura, M.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, Proc. Natl. Acad. Sci. USA 106, 6044 (2009).
[CrossRef]

Zeng, J.

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, Nano Lett. 10, 3261 (2010).
[CrossRef]

Appl. Opt. (1)

Carbon (2)

A. Okamoto, I. Gunjishima, T. Inoue, M. Akoshima, H. Miyagawa, T. Nakano, T. Baba, M. Tanemura, and G. Oomi, Carbon 49, 294 (2011).
[CrossRef]

C. J. Chunnilall, J. H. Lehman, E. Theocharous, and A. Sanders, Carbon 50, 5348 (2012).
[CrossRef]

Current Nanosci. (1)

Z. Khan, S. Husain, and M. Husain, Current Nanosci. 6, 626 (2010).
[CrossRef]

Metrologia (1)

J. E. Martin, N. P. Fox, and P. J. Key, Metrologia 21, 147 (1985).
[CrossRef]

Nano Lett. (2)

Z. Yang, L. Ci, J. A. Bur, S. Lin, and P. M. Ajayan, Nano Lett. 8, 446 (2008).
[CrossRef]

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, and C. Jensen, Nano Lett. 10, 3261 (2010).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, Proc. Natl. Acad. Sci. USA 106, 6044 (2009).
[CrossRef]

Science (1)

M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, Science 312, 413 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Micromachined silicon chip (a) before and (b) after VANTA growth. (c) One-body thermal model for the CNCR.

Fig. 2.
Fig. 2.

Simplified schematic of experimental apparatus.

Fig. 3.
Fig. 3.

Thermistor VANTA resistance versus temperature. Solid red curve is the fit to the variable range hopping model. (Inset) Thermistor α versus temperature.

Fig. 4.
Fig. 4.

(a) CNCR response equivalence versus input power. (b) Standard deviation (k=2) versus input power obtained from a sliding window on the data in (a). Solid line is the predicted standard deviation expected from the variation in bath temperature.

Fig. 5.
Fig. 5.

(a) Thermal model for a future improved-performance CNCR. (b) Schematic of potential trap designs utilizing two CNCRs with different strength thermal links (G).

Metrics