Abstract

Spectral responses in compound waveguide grating structures composed of two ridges with identical widths in each period are presented. For the proposed structures, we show that the spectral width of the guided-mode resonance (GMR) can be tailored in an independent way without modifying the spectral lineshapes and sideband levels. The method described in this Letter offers a very simple and efficient way to control spectral responses in GMR structures.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Magnusson, and S. S. Wang, Appl. Phys. Lett. 61, 1022 (1992).
    [CrossRef]
  2. A. Sharon, D. Rosenblatt, and A. A. Friesem, J. Opt. Soc. Am. A 14, 2985 (1997).
    [CrossRef]
  3. T. Sang, Z. Wang, J. Zhu, L. Wang, Y. Wu, and L. Chen, Opt. Express 15, 9659 (2007).
    [CrossRef]
  4. D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, Opt. Eng. 37, 2634 (1998).
    [CrossRef]
  5. D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
    [CrossRef]
  6. S. M. Norton, T. Erdogan, and G. M. Morris, J. Opt. Soc. Am. A 14, 629 (1997).
    [CrossRef]
  7. S. T. Thurman and G. M. Morris, Appl. Opt. 42, 3225 (2003).
    [CrossRef]
  8. W. Liu, Z. Lai, H. Guo, and Y. Liu, Opt. Lett. 35, 865 (2010).
    [CrossRef]
  9. Y. L. Tsai, J. Y. Chang, M. L. Wu, Z. R. Tu, C. C. Lee, C. M. Wang, and C. L. Hsu, Opt. Lett. 35, 4199 (2010).
    [CrossRef]
  10. M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 71, 811 (1981).
    [CrossRef]
  11. S. M. Rytov, Sov. Phys. JETP 2, 466 (1956).
  12. S. S. Wang and R. Magnusson, Opt. Lett. 19, 919 (1994).
    [CrossRef]
  13. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1077 (1995).
    [CrossRef]
  14. N. L. Tsitsas, N. K. Uzunoglu, and D. I. Kaklamani, Radio Sci. 42, RS6S22 (2007).
    [CrossRef]
  15. Y. Nakata and M. Koshiba, J. Opt. Soc. Am. A 7, 1494 (1990).
    [CrossRef]
  16. S. S. Wang and R. Magnusson, Appl. Opt. 34, 2414 (1995).
    [CrossRef]
  17. Y. Ding and R. Magnusson, Opt. Express 12, 1885 (2004).
    [CrossRef]
  18. S. H. Fan and J. D. Joannopoulos, Phys. Rev. B 65, 235112 (2002).
    [CrossRef]
  19. G. D’Aguanno, D. de Ceglia, N. Mattiucci, and M. J. Bloemer, Opt. Lett. 36, 1984 (2011).
    [CrossRef]
  20. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010).
    [CrossRef]

2011

2010

2007

T. Sang, Z. Wang, J. Zhu, L. Wang, Y. Wu, and L. Chen, Opt. Express 15, 9659 (2007).
[CrossRef]

N. L. Tsitsas, N. K. Uzunoglu, and D. I. Kaklamani, Radio Sci. 42, RS6S22 (2007).
[CrossRef]

2004

2003

2002

S. H. Fan and J. D. Joannopoulos, Phys. Rev. B 65, 235112 (2002).
[CrossRef]

1998

D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, Opt. Eng. 37, 2634 (1998).
[CrossRef]

1997

1995

1994

1992

R. Magnusson, and S. S. Wang, Appl. Phys. Lett. 61, 1022 (1992).
[CrossRef]

1990

1981

1956

S. M. Rytov, Sov. Phys. JETP 2, 466 (1956).

Bloemer, M. J.

Chang, J. Y.

Chen, L.

D’Aguanno, G.

de Ceglia, D.

Ding, Y.

Erdogan, T.

Fan, S. H.

S. H. Fan and J. D. Joannopoulos, Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010).
[CrossRef]

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

A. Sharon, D. Rosenblatt, and A. A. Friesem, J. Opt. Soc. Am. A 14, 2985 (1997).
[CrossRef]

Gaylord, T. K.

Grann, E. B.

Guo, H.

Hsu, C. L.

Joannopoulos, J. D.

S. H. Fan and J. D. Joannopoulos, Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Kaklamani, D. I.

N. L. Tsitsas, N. K. Uzunoglu, and D. I. Kaklamani, Radio Sci. 42, RS6S22 (2007).
[CrossRef]

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010).
[CrossRef]

Koshiba, M.

Lai, Z.

Lee, C. C.

Liu, W.

Liu, Y.

Magnusson, R.

Y. Ding and R. Magnusson, Opt. Express 12, 1885 (2004).
[CrossRef]

D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, Opt. Eng. 37, 2634 (1998).
[CrossRef]

S. S. Wang and R. Magnusson, Appl. Opt. 34, 2414 (1995).
[CrossRef]

S. S. Wang and R. Magnusson, Opt. Lett. 19, 919 (1994).
[CrossRef]

R. Magnusson, and S. S. Wang, Appl. Phys. Lett. 61, 1022 (1992).
[CrossRef]

Maldonado, T. A.

D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, Opt. Eng. 37, 2634 (1998).
[CrossRef]

Mattiucci, N.

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010).
[CrossRef]

Moharam, M. G.

Morris, G. M.

Nakata, Y.

Norton, S. M.

Pommet, D. A.

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

A. Sharon, D. Rosenblatt, and A. A. Friesem, J. Opt. Soc. Am. A 14, 2985 (1997).
[CrossRef]

Rytov, S. M.

S. M. Rytov, Sov. Phys. JETP 2, 466 (1956).

Sang, T.

Sharon, A.

A. Sharon, D. Rosenblatt, and A. A. Friesem, J. Opt. Soc. Am. A 14, 2985 (1997).
[CrossRef]

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

Shin, D.

D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, Opt. Eng. 37, 2634 (1998).
[CrossRef]

Thurman, S. T.

Tibuleac, S.

D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, Opt. Eng. 37, 2634 (1998).
[CrossRef]

Tsai, Y. L.

Tsitsas, N. L.

N. L. Tsitsas, N. K. Uzunoglu, and D. I. Kaklamani, Radio Sci. 42, RS6S22 (2007).
[CrossRef]

Tu, Z. R.

Uzunoglu, N. K.

N. L. Tsitsas, N. K. Uzunoglu, and D. I. Kaklamani, Radio Sci. 42, RS6S22 (2007).
[CrossRef]

Wang, C. M.

Wang, L.

Wang, S. S.

Wang, Z.

Wu, M. L.

Wu, Y.

Zhu, J.

Appl. Opt.

Appl. Phys. Lett.

R. Magnusson, and S. S. Wang, Appl. Phys. Lett. 61, 1022 (1992).
[CrossRef]

IEEE J. Quantum Electron.

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Eng.

D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, Opt. Eng. 37, 2634 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

S. H. Fan and J. D. Joannopoulos, Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Radio Sci.

N. L. Tsitsas, N. K. Uzunoglu, and D. I. Kaklamani, Radio Sci. 42, RS6S22 (2007).
[CrossRef]

Rev. Mod. Phys.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010).
[CrossRef]

Sov. Phys. JETP

S. M. Rytov, Sov. Phys. JETP 2, 466 (1956).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Scheme of the two types of waveguide gratings. (a) two-part period and (b) four-part period. The first layer is a grating; the second layer is a waveguide layer. nH and nL are the high and low refractive indices of the grating; n2, nC, and nS are the refractive indices of the waveguide layer, cover layer and substrate; d1 and d2 are the layer thicknesses; Λ is the grating period; fa, fb, and fc are the fill factors.

Fig. 2.
Fig. 2.

Amplitude of the Fourier grating harmonics |εn| as functions of fill factor fb for the four-part period grating profile. The parameters are nH=1.95 and nL=1.

Fig. 3.
Fig. 3.

Reflection responses of the compound waveguide grating structure with various fill factor fb for the normal incidence TE-polarized light. The remaining parameters are nc=nL=1 (air), nH=n2=1.95 (HfO2), ns=1.46 (SiO2), Λ=0.4um, fa=0.3, d1=0.26um, and d2=0.12um.

Fig. 4.
Fig. 4.

Effect of the fill factor fb. Electric field distributions (left) and amplitude of the electric modal fields (right) at the wavelength of the center resonance for fill factor fb=0 (a), (b) and fb=0.16 (c), (d). White (gray) lines indicate interfaces of the different layers.

Fig. 5.
Fig. 5.

(a) Single-layer waveguide grating with four-part period. (b)–(e) Reflection responses of the structure with various fill factor fb for the normal incidence TE-polarized light. The total fill factor of the two grating grooves in each period is kept at 0.3. The remaining parameters are nc=nL=1 (air), nH=3.48 (Si), ns=1.48 (SiO2), Λ=0.862um, fa=0.35, and d=0.16um.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε(x)=nεnexp(i2nπxΛ),
ε0=(1fbfc)nH2+(fb+fc)nL2,
εn=(nH2nL2)sin[nπ(1fc)]sin(nπfb)nπ,(n=±1,±2,±N).

Metrics