Abstract

We experimentally demonstrate a new optical filter design based on a vertically coupled photonic crystal (PhC) cavity and a bus waveguide monolithically integrated on the silicon-on-insulator platform. The use of a vertically coupled waveguide gives flexibility in the choice of the waveguide material and dimensions, dramatically lowering the insertion loss while achieving very high coupling efficiencies to wavelength scale resonators and thus allows the creation of PhC-based optical filters with very high extinction ratio (>10dB).

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Qiu, Opt. Lett. 30, 1476 (2005).
    [CrossRef]
  2. T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, Opt. Express 17, 22505 (2009).
    [CrossRef]
  3. Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, Opt. Express 14, 9430 (2006).
    [CrossRef]
  4. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, Opt. Express 16, 15915 (2008).
    [CrossRef]
  5. Y. Xu, Y. Li, R. K. Lee, and A. Yariv, Phys. Rev. E 62, 7389 (2000).
    [CrossRef]
  6. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, Nat. Mater. 4, 207 (2005).
    [CrossRef]
  7. K. Welna, S. L. Portalupi, M. Galli, L. O’Faolain, and T. F. Krauss, IEEE J. Quantum Electron. 48, 1177 (2012).
    [CrossRef]
  8. Z. Zhang and M. Qiu, Opt. Express 13, 2596 (2005).
    [CrossRef]
  9. K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, and T. F. Krauss, Opt. Express 20, 27420 (2012).
    [CrossRef]
  10. S.-W. Jeon, J.-K. Han, B.-S. Song, and S. Noda, Opt. Express 18, 19361 (2010).
    [CrossRef]

2012 (2)

K. Welna, S. L. Portalupi, M. Galli, L. O’Faolain, and T. F. Krauss, IEEE J. Quantum Electron. 48, 1177 (2012).
[CrossRef]

K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, and T. F. Krauss, Opt. Express 20, 27420 (2012).
[CrossRef]

2010 (1)

2009 (1)

2008 (1)

2006 (1)

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, Opt. Express 14, 9430 (2006).
[CrossRef]

2005 (3)

2000 (1)

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, Phys. Rev. E 62, 7389 (2000).
[CrossRef]

Akahane, Y.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, Nat. Mater. 4, 207 (2005).
[CrossRef]

Asano, T.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, Nat. Mater. 4, 207 (2005).
[CrossRef]

Bergman, K.

Biberman, A.

Chen, L.

Debnath, K.

Galli, M.

K. Welna, S. L. Portalupi, M. Galli, L. O’Faolain, and T. F. Krauss, IEEE J. Quantum Electron. 48, 1177 (2012).
[CrossRef]

Gardes, F. Y.

Han, J.-K.

Jeon, S.-W.

Krauss, T. F.

K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, and T. F. Krauss, Opt. Express 20, 27420 (2012).
[CrossRef]

K. Welna, S. L. Portalupi, M. Galli, L. O’Faolain, and T. F. Krauss, IEEE J. Quantum Electron. 48, 1177 (2012).
[CrossRef]

Kuramochi, E.

Lee, B. G.

Lee, R. K.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, Phys. Rev. E 62, 7389 (2000).
[CrossRef]

Li, Y.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, Phys. Rev. E 62, 7389 (2000).
[CrossRef]

Lipson, M.

Nishiguchi, K.

Noda, S.

S.-W. Jeon, J.-K. Han, B.-S. Song, and S. Noda, Opt. Express 18, 19361 (2010).
[CrossRef]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, Nat. Mater. 4, 207 (2005).
[CrossRef]

Notomi, M.

O’Faolain, L.

K. Welna, S. L. Portalupi, M. Galli, L. O’Faolain, and T. F. Krauss, IEEE J. Quantum Electron. 48, 1177 (2012).
[CrossRef]

K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, and T. F. Krauss, Opt. Express 20, 27420 (2012).
[CrossRef]

Portalupi, S. L.

K. Welna, S. L. Portalupi, M. Galli, L. O’Faolain, and T. F. Krauss, IEEE J. Quantum Electron. 48, 1177 (2012).
[CrossRef]

Qiu, M.

Reed, G. T.

Schmidt, B.

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, Opt. Express 14, 9430 (2006).
[CrossRef]

Shakya, J.

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, Opt. Express 14, 9430 (2006).
[CrossRef]

Sherwood-Droz, N.

Song, B.-S.

S.-W. Jeon, J.-K. Han, B.-S. Song, and S. Noda, Opt. Express 18, 19361 (2010).
[CrossRef]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, Nat. Mater. 4, 207 (2005).
[CrossRef]

Steffan, A. G.

Tanabe, T.

Wang, H.

Welna, K.

K. Welna, S. L. Portalupi, M. Galli, L. O’Faolain, and T. F. Krauss, IEEE J. Quantum Electron. 48, 1177 (2012).
[CrossRef]

Xu, Q.

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, Opt. Express 14, 9430 (2006).
[CrossRef]

Xu, Y.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, Phys. Rev. E 62, 7389 (2000).
[CrossRef]

Yariv, A.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, Phys. Rev. E 62, 7389 (2000).
[CrossRef]

Zhang, Z.

IEEE J. Quantum Electron. (1)

K. Welna, S. L. Portalupi, M. Galli, L. O’Faolain, and T. F. Krauss, IEEE J. Quantum Electron. 48, 1177 (2012).
[CrossRef]

Nat. Mater. (1)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, Nat. Mater. 4, 207 (2005).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. E (1)

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, Phys. Rev. E 62, 7389 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the optical filter where a bus waveguide is vertically coupled to a PhC cavity. (b) Scanning electron microscopy image of the device cross-section at the cavity region.

Fig. 2.
Fig. 2.

Dominant electric field profile of (a) waveguide; (b) cavity; K-space distribution of the dominant field; (c) waveguide; and (d) cavity.

Fig. 3.
Fig. 3.

Transmission and reflection spectra of a vertically coupled cavity waveguide (ZEP) system. The extinction ratio is measured as the ratio between the on- and off-resonance transmission. The inset shows the first two modes of the cavity.

Fig. 4.
Fig. 4.

K-space distribution of dominant electric field of (a) mode1 and (b) mode2. Extinction ratio (blue squares) and K-space overlap intensity (red curve) for different waveguide dimensions for (c) mode1 and (d) mode2. Qtotal (blue circles) and Qcavity (red squares) for different waveguide dimensions for (e) mode1 and (f) mode2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T=Qtotal2Qcavity2,R=Qtotal2Qcoupling2.
1Qtotal=1Qcavity+1Qcoupling.

Metrics