Abstract

We report on a theoretical and experimental study of cascaded Bragg scattering in fiber optics. We show that the usual energy-momentum conservation of Bragg scattering can be considerably relaxed via cascade-induced phase-matching. Experimentally we demonstrate frequency translation over six- and 11-fold cascades, in excellent agreement with derived phase-matching conditions.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Inoue, IEEE Photonics Technol Lett. 6, 1451 (1994).
    [CrossRef]
  2. C. J. McKinstrie, S. Radic, and M. G. Raymer, Opt. Express 12, 5037 (2004).
    [CrossRef]
  3. K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, IEEE J. Sel. Top. Quantum Electron. 8, 560 (2002).
    [CrossRef]
  4. R. Provo, S. G. Murdoch, J. D. Harvey, and D. Méchin, Opt. Lett. 35, 3730 (2010).
    [CrossRef]
  5. H. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, Phys. Rev. Lett. 105, 093604 (2010).
    [CrossRef]
  6. M. Shen, H. K. Y. Cheung, R. W. L. Fung, and K. K. Y. Wong, J. Lightwave Technol. 27, 2707 (2009).
    [CrossRef]
  7. M. Shen, X. Xu, T. I. Yuk, and K. K. Wong, IEEE J. Quantum Electron. 45, 1309 (2009).
    [CrossRef]
  8. M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, Phys. Rev. Lett. 109, 223904 (2012).
    [CrossRef]
  9. A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, Opt. Lett. 29, 2411 (2004).
    [CrossRef]

2012 (1)

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, Phys. Rev. Lett. 109, 223904 (2012).
[CrossRef]

2010 (2)

R. Provo, S. G. Murdoch, J. D. Harvey, and D. Méchin, Opt. Lett. 35, 3730 (2010).
[CrossRef]

H. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, Phys. Rev. Lett. 105, 093604 (2010).
[CrossRef]

2009 (2)

M. Shen, H. K. Y. Cheung, R. W. L. Fung, and K. K. Y. Wong, J. Lightwave Technol. 27, 2707 (2009).
[CrossRef]

M. Shen, X. Xu, T. I. Yuk, and K. K. Wong, IEEE J. Quantum Electron. 45, 1309 (2009).
[CrossRef]

2004 (2)

2002 (1)

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, IEEE J. Sel. Top. Quantum Electron. 8, 560 (2002).
[CrossRef]

1994 (1)

K. Inoue, IEEE Photonics Technol Lett. 6, 1451 (1994).
[CrossRef]

Cheung, H. K. Y.

Dudley, J. M.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, Phys. Rev. Lett. 109, 223904 (2012).
[CrossRef]

Erkintalo, M.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, Phys. Rev. Lett. 109, 223904 (2012).
[CrossRef]

Fung, R. W. L.

Genty, G.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, Phys. Rev. Lett. 109, 223904 (2012).
[CrossRef]

Harvey, J. D.

Inoue, K.

K. Inoue, IEEE Photonics Technol Lett. 6, 1451 (1994).
[CrossRef]

Kazovsky, L. G.

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, IEEE J. Sel. Top. Quantum Electron. 8, 560 (2002).
[CrossRef]

Marhic, M. E.

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, IEEE J. Sel. Top. Quantum Electron. 8, 560 (2002).
[CrossRef]

McGuinness, H.

H. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, Phys. Rev. Lett. 105, 093604 (2010).
[CrossRef]

McKinstrie, C. J.

H. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, Phys. Rev. Lett. 105, 093604 (2010).
[CrossRef]

C. J. McKinstrie, S. Radic, and M. G. Raymer, Opt. Express 12, 5037 (2004).
[CrossRef]

Méchin, D.

Murdoch, S. G.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, Phys. Rev. Lett. 109, 223904 (2012).
[CrossRef]

R. Provo, S. G. Murdoch, J. D. Harvey, and D. Méchin, Opt. Lett. 35, 3730 (2010).
[CrossRef]

Provo, R.

Radic, S.

H. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, Phys. Rev. Lett. 105, 093604 (2010).
[CrossRef]

C. J. McKinstrie, S. Radic, and M. G. Raymer, Opt. Express 12, 5037 (2004).
[CrossRef]

Raymer, M. G.

H. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, Phys. Rev. Lett. 105, 093604 (2010).
[CrossRef]

C. J. McKinstrie, S. Radic, and M. G. Raymer, Opt. Express 12, 5037 (2004).
[CrossRef]

Russell, P. St. J.

Shen, M.

M. Shen, X. Xu, T. I. Yuk, and K. K. Wong, IEEE J. Quantum Electron. 45, 1309 (2009).
[CrossRef]

M. Shen, H. K. Y. Cheung, R. W. L. Fung, and K. K. Y. Wong, J. Lightwave Technol. 27, 2707 (2009).
[CrossRef]

Skryabin, D. V.

Uesaka, K.

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, IEEE J. Sel. Top. Quantum Electron. 8, 560 (2002).
[CrossRef]

Wong, K. K.

M. Shen, X. Xu, T. I. Yuk, and K. K. Wong, IEEE J. Quantum Electron. 45, 1309 (2009).
[CrossRef]

Wong, K. K. Y.

M. Shen, H. K. Y. Cheung, R. W. L. Fung, and K. K. Y. Wong, J. Lightwave Technol. 27, 2707 (2009).
[CrossRef]

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, IEEE J. Sel. Top. Quantum Electron. 8, 560 (2002).
[CrossRef]

Xu, X.

M. Shen, X. Xu, T. I. Yuk, and K. K. Wong, IEEE J. Quantum Electron. 45, 1309 (2009).
[CrossRef]

Xu, Y. Q.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, Phys. Rev. Lett. 109, 223904 (2012).
[CrossRef]

Yuk, T. I.

M. Shen, X. Xu, T. I. Yuk, and K. K. Wong, IEEE J. Quantum Electron. 45, 1309 (2009).
[CrossRef]

Yulin, A. V.

IEEE J. Quantum Electron. (1)

M. Shen, X. Xu, T. I. Yuk, and K. K. Wong, IEEE J. Quantum Electron. 45, 1309 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, IEEE J. Sel. Top. Quantum Electron. 8, 560 (2002).
[CrossRef]

IEEE Photonics Technol Lett. (1)

K. Inoue, IEEE Photonics Technol Lett. 6, 1451 (1994).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, Phys. Rev. Lett. 109, 223904 (2012).
[CrossRef]

H. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, Phys. Rev. Lett. 105, 093604 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the considered frequency arrangement.

Fig. 2.
Fig. 2.

Phase-matched frequencies for various orders of Bragg scattering. Numbers below the components identify the signal–idler pairs for a given cascade order.

Fig. 3.
Fig. 3.

Simulated spectrum (a) at the fiber input and (b) after 44 m of propagation. (c) Evolution of power in selected spectral components: injected signal (red dashed curve); first-order idler (blue dash-dotted curve); and the second-order idler (black solid curve).

Fig. 4.
Fig. 4.

Experimental (solid curve) and simulated (circles) output spectra showing the excitation of a (a) sixth and (b) 11th-order cascade. The upper parts of the plots are the outputs while the input spectra (lower parts) have been displaced by 25dB for clarity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

j=1nκj=±n[β(ω+p)β(ωp)][β(ωn)β(ω0)]=0.
n3β4Δ3+(4n2β4Ω+4n2β3β3)Δ2+(6nβ4Ω2+12nβ3Ω+12nβ2)Δ+(4β4Ω3+12β3Ω2+24β2Ω)=0,

Metrics