Abstract

A two-beam interferometer is proposed and experimentally demonstrated with OPD magnified. Two cascaded fiber ring resonators with almost the same fiber length are spliced into a fiber loop. An acousto-optic modulator is employed to generate optical pulses and to choose the pulses traveling around one of the resonators for x trips. The interferometer is characterized in displacement in our experiment. Experimental results show the proportional relationship between the sensitivity and x. The high-sensitivity interferometer scheme is useful in some measurement applications that require high sensitivity, such as solid earth tide gauge.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. K. Kirkendall and A. Dandridge, J. Phys. D 37, 197 (2004).
    [CrossRef]
  2. Y. Jiang, Y. Xu, and C. K. Y. Leung, J. Intell. Mater. Syst. Struct. 19, 497 (2008).
    [CrossRef]
  3. Y. Jiang, W. H. Ding, P. J. Liang, L. Fu, and C. W. Wang, IEEE Photon. Technol. Lett. 28, 3294 (2010).
    [CrossRef]
  4. Y. Jiang, Opt. Lett. 33, 1869 (2008).
    [CrossRef]
  5. Y. Jiang, Appl. Opt. 47, 925 (2008).
    [CrossRef]
  6. Y. Jiang and C. Tang, Smart Mater. Struc. 17, 055013 (2008).
    [CrossRef]
  7. Y. Zhu, Z. Huang, F. Shen, and A. Wang, Opt. Lett. 30, 711 (2005).
    [CrossRef]
  8. T. Liu and G. F. Fernando, Rev. Sci. Instrum. 71, 1275 (2000).
    [CrossRef]
  9. Y. Jiang, IEEE Photon. Technol. Lett. 20, 75 (2008).
    [CrossRef]
  10. Y. Jiang and C. J. Tang, Rev. Sci. Instrum. 79, 106105 (2008).
    [CrossRef]
  11. Z. Wang and Y. Jiang, Appl. Opt. 51, 5512 (2012).
    [CrossRef]

2012

2010

Y. Jiang, W. H. Ding, P. J. Liang, L. Fu, and C. W. Wang, IEEE Photon. Technol. Lett. 28, 3294 (2010).
[CrossRef]

2008

Y. Jiang, Opt. Lett. 33, 1869 (2008).
[CrossRef]

Y. Jiang, Appl. Opt. 47, 925 (2008).
[CrossRef]

Y. Jiang and C. Tang, Smart Mater. Struc. 17, 055013 (2008).
[CrossRef]

Y. Jiang, Y. Xu, and C. K. Y. Leung, J. Intell. Mater. Syst. Struct. 19, 497 (2008).
[CrossRef]

Y. Jiang, IEEE Photon. Technol. Lett. 20, 75 (2008).
[CrossRef]

Y. Jiang and C. J. Tang, Rev. Sci. Instrum. 79, 106105 (2008).
[CrossRef]

2005

2004

C. K. Kirkendall and A. Dandridge, J. Phys. D 37, 197 (2004).
[CrossRef]

2000

T. Liu and G. F. Fernando, Rev. Sci. Instrum. 71, 1275 (2000).
[CrossRef]

Dandridge, A.

C. K. Kirkendall and A. Dandridge, J. Phys. D 37, 197 (2004).
[CrossRef]

Ding, W. H.

Y. Jiang, W. H. Ding, P. J. Liang, L. Fu, and C. W. Wang, IEEE Photon. Technol. Lett. 28, 3294 (2010).
[CrossRef]

Fernando, G. F.

T. Liu and G. F. Fernando, Rev. Sci. Instrum. 71, 1275 (2000).
[CrossRef]

Fu, L.

Y. Jiang, W. H. Ding, P. J. Liang, L. Fu, and C. W. Wang, IEEE Photon. Technol. Lett. 28, 3294 (2010).
[CrossRef]

Huang, Z.

Jiang, Y.

Z. Wang and Y. Jiang, Appl. Opt. 51, 5512 (2012).
[CrossRef]

Y. Jiang, W. H. Ding, P. J. Liang, L. Fu, and C. W. Wang, IEEE Photon. Technol. Lett. 28, 3294 (2010).
[CrossRef]

Y. Jiang, Opt. Lett. 33, 1869 (2008).
[CrossRef]

Y. Jiang, Appl. Opt. 47, 925 (2008).
[CrossRef]

Y. Jiang and C. Tang, Smart Mater. Struc. 17, 055013 (2008).
[CrossRef]

Y. Jiang, Y. Xu, and C. K. Y. Leung, J. Intell. Mater. Syst. Struct. 19, 497 (2008).
[CrossRef]

Y. Jiang, IEEE Photon. Technol. Lett. 20, 75 (2008).
[CrossRef]

Y. Jiang and C. J. Tang, Rev. Sci. Instrum. 79, 106105 (2008).
[CrossRef]

Kirkendall, C. K.

C. K. Kirkendall and A. Dandridge, J. Phys. D 37, 197 (2004).
[CrossRef]

Leung, C. K. Y.

Y. Jiang, Y. Xu, and C. K. Y. Leung, J. Intell. Mater. Syst. Struct. 19, 497 (2008).
[CrossRef]

Liang, P. J.

Y. Jiang, W. H. Ding, P. J. Liang, L. Fu, and C. W. Wang, IEEE Photon. Technol. Lett. 28, 3294 (2010).
[CrossRef]

Liu, T.

T. Liu and G. F. Fernando, Rev. Sci. Instrum. 71, 1275 (2000).
[CrossRef]

Shen, F.

Tang, C.

Y. Jiang and C. Tang, Smart Mater. Struc. 17, 055013 (2008).
[CrossRef]

Tang, C. J.

Y. Jiang and C. J. Tang, Rev. Sci. Instrum. 79, 106105 (2008).
[CrossRef]

Wang, A.

Wang, C. W.

Y. Jiang, W. H. Ding, P. J. Liang, L. Fu, and C. W. Wang, IEEE Photon. Technol. Lett. 28, 3294 (2010).
[CrossRef]

Wang, Z.

Xu, Y.

Y. Jiang, Y. Xu, and C. K. Y. Leung, J. Intell. Mater. Syst. Struct. 19, 497 (2008).
[CrossRef]

Zhu, Y.

Appl. Opt.

IEEE Photon. Technol. Lett.

Y. Jiang, IEEE Photon. Technol. Lett. 20, 75 (2008).
[CrossRef]

Y. Jiang, W. H. Ding, P. J. Liang, L. Fu, and C. W. Wang, IEEE Photon. Technol. Lett. 28, 3294 (2010).
[CrossRef]

J. Intell. Mater. Syst. Struct.

Y. Jiang, Y. Xu, and C. K. Y. Leung, J. Intell. Mater. Syst. Struct. 19, 497 (2008).
[CrossRef]

J. Phys. D

C. K. Kirkendall and A. Dandridge, J. Phys. D 37, 197 (2004).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

T. Liu and G. F. Fernando, Rev. Sci. Instrum. 71, 1275 (2000).
[CrossRef]

Y. Jiang and C. J. Tang, Rev. Sci. Instrum. 79, 106105 (2008).
[CrossRef]

Smart Mater. Struc.

Y. Jiang and C. Tang, Smart Mater. Struc. 17, 055013 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup of the two-beam interferometer with OPD magnified. Two cascaded fiber ring resonators with almost the same fiber length are spliced into a fiber loop.

Fig. 2.
Fig. 2.

Interference mechanism of the interferometer. The AOM is employed to generate optical pulses and to choose the pulses. The pulses travel along different paths. When T=t0+xt1, an interference pattern of pulses Px,0 and P0,x can be obtained. In other words, OPD between the resonators is magnified by a factor of x (x=1,2,3,).

Fig. 3.
Fig. 3.

Schematic of the sequential relationship between the electronic pulse wave and the optical pulse. By properly designing the fiber length, the interference in some cases, such as 2T=t0+xt1, can be reduced. In our experiment, the lengths of the resonators are both about 7.2 m (t1=35ns), l0 is about 10.9 m (t0=53ns), and pulsewidth t is about 18 ns. The pulses P0,5, P5,0, P0,6, and P6,0 cannot be chosen by the AOM.

Fig. 4.
Fig. 4.

Transmission spectral responses for x=1, x=2, x=4, and x=7, respectively.

Fig. 5.
Fig. 5.

Linear relationship between the OPD change and the displacement of the translation stage for x=1, x=2, x=4, and x=7, respectively.

Fig. 6.
Fig. 6.

Stability tests carried out every minute show that the variation of OPD between pulses Px,0 and P0,x is ±2.22%, ±1.99%, ±1.27%, ±0.83%, ±1.91%, ±1.87%, and ±1.33% when x=1, 2, 3, 4, 5, 6, and 7, respectively. The OPD between these two resonators is about 235 μm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Lossi,j(dB)={0.68x+9.11×2+3×2i=0,x0.68(x2)+9.11×4+3×2i0,x.
OPD=mλ1λ2λ1λ2,
Δ(nl)=0.78nηxΔl,x=1,2,3,,

Metrics