Abstract

We report the first demonstration of a Raman fiber laser (RFL) emitting in the mid-infrared, above 3 μm. The operation of a single-mode As2S3 chalcogenide glass based RFL at 3.34 μm is demonstrated by using a low-loss Fabry–Pérot cavity formed by a pair of fiber Bragg gratings. A specially designed quasi-cw erbium-doped fluoride fiber laser emitting at 3.005 μm is used to pump the RFL. A laser output peak power of 0.6 W is obtained with a lasing efficiency of 39% with respect to the launched pump power.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Stolen, A. R. Tynes, and E. P. Ippen, Appl. Phys. Lett. 20, 62 (1972).
    [CrossRef]
  2. V. I. Karpov, E. M. Dianov, V. M. Paramonov, O. I. Medvedkov, M. M. Bubnov, S. L. Semyonov, S. A. Vasiliev, V. N. Protopopov, O. N. Egorova, V. F. Hopin, A. N. Guryanov, M. P. Bachynski, and W. R. L. Clements, Opt. Lett. 24, 887 (1999).
    [CrossRef]
  3. Y. Feng, L. R. Taylor, and D. B. Calia, Opt. Express 17, 23678 (2009).
    [CrossRef]
  4. E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur’yanov, V. F. Khopin, and M. V. Yashkov, Quantum Electron. 34, 695 (2004).
    [CrossRef]
  5. V. Fortin, M. Bernier, J. Carrier, and R. Vallée, Opt. Lett. 36, 4152 (2011).
    [CrossRef]
  6. V. Fortin, M. Bernier, D. Faucher, J. Carrier, and R. Vallée, Opt. Express 20, 19412 (2012).
    [CrossRef]
  7. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  8. S. D. Jackson, Nat. Photonics 6, 423 (2012).
    [CrossRef]
  9. P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. Liu, Laser Phys. 22, 1744 (2012).
    [CrossRef]
  10. R. T. White and T. M. Monro, Opt. Lett. 36, 2351 (2011).
    [CrossRef]
  11. P. Thielen, L. Shaw, J. Sanghera, and I. Aggarwal, Opt. Express 11, 3248 (2003).
    [CrossRef]
  12. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, IEEE J. Sel. Top. Quantum Electron. 15, 114 (2009).
    [CrossRef]
  13. S. D. Jackson and G. Anzueto-Sánchez, Appl. Phys. Lett. 88, 221106 (2006).
    [CrossRef]
  14. D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, Opt. Lett. 36, 1104 (2011).
    [CrossRef]
  15. M. Bernier, M. El-Amraoui, J. F. Couillard, Y. Messaddeq, and R. Vallée, Opt. Lett. 37, 3900 (2012).
  16. D. Faucher, N. Caron, M. Bernier, and R. Vallée, in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (OSA, 2012), paper FTh4A.6.

2012

2011

2009

Y. Feng, L. R. Taylor, and D. B. Calia, Opt. Express 17, 23678 (2009).
[CrossRef]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, IEEE J. Sel. Top. Quantum Electron. 15, 114 (2009).
[CrossRef]

2006

S. D. Jackson and G. Anzueto-Sánchez, Appl. Phys. Lett. 88, 221106 (2006).
[CrossRef]

2004

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur’yanov, V. F. Khopin, and M. V. Yashkov, Quantum Electron. 34, 695 (2004).
[CrossRef]

2003

1999

1972

R. H. Stolen, A. R. Tynes, and E. P. Ippen, Appl. Phys. Lett. 20, 62 (1972).
[CrossRef]

Aggarwal, I.

Aggarwal, I. D.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, IEEE J. Sel. Top. Quantum Electron. 15, 114 (2009).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Androz, G.

Anzueto-Sánchez, G.

S. D. Jackson and G. Anzueto-Sánchez, Appl. Phys. Lett. 88, 221106 (2006).
[CrossRef]

Bachynski, M. P.

Bernier, M.

Bubnov, M. M.

Bufetov, I. A.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur’yanov, V. F. Khopin, and M. V. Yashkov, Quantum Electron. 34, 695 (2004).
[CrossRef]

Calia, D. B.

Caron, N.

D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, Opt. Lett. 36, 1104 (2011).
[CrossRef]

D. Faucher, N. Caron, M. Bernier, and R. Vallée, in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (OSA, 2012), paper FTh4A.6.

Carrier, J.

Clements, W. R. L.

Couillard, J. F.

Dianov, E. M.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur’yanov, V. F. Khopin, and M. V. Yashkov, Quantum Electron. 34, 695 (2004).
[CrossRef]

V. I. Karpov, E. M. Dianov, V. M. Paramonov, O. I. Medvedkov, M. M. Bubnov, S. L. Semyonov, S. A. Vasiliev, V. N. Protopopov, O. N. Egorova, V. F. Hopin, A. N. Guryanov, M. P. Bachynski, and W. R. L. Clements, Opt. Lett. 24, 887 (1999).
[CrossRef]

Egorova, O. N.

El-Amraoui, M.

Faucher, D.

V. Fortin, M. Bernier, D. Faucher, J. Carrier, and R. Vallée, Opt. Express 20, 19412 (2012).
[CrossRef]

D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, Opt. Lett. 36, 1104 (2011).
[CrossRef]

D. Faucher, N. Caron, M. Bernier, and R. Vallée, in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (OSA, 2012), paper FTh4A.6.

Feng, Y.

Fortin, V.

Gur’yanov, A. N.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur’yanov, V. F. Khopin, and M. V. Yashkov, Quantum Electron. 34, 695 (2004).
[CrossRef]

Guryanov, A. N.

Hopin, V. F.

Ippen, E. P.

R. H. Stolen, A. R. Tynes, and E. P. Ippen, Appl. Phys. Lett. 20, 62 (1972).
[CrossRef]

Jackson, S. D.

S. D. Jackson, Nat. Photonics 6, 423 (2012).
[CrossRef]

S. D. Jackson and G. Anzueto-Sánchez, Appl. Phys. Lett. 88, 221106 (2006).
[CrossRef]

Karpov, V. I.

Khopin, V. F.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur’yanov, V. F. Khopin, and M. V. Yashkov, Quantum Electron. 34, 695 (2004).
[CrossRef]

Liu, Z.

P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. Liu, Laser Phys. 22, 1744 (2012).
[CrossRef]

Lü, H.

P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. Liu, Laser Phys. 22, 1744 (2012).
[CrossRef]

Ma, Y.

P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. Liu, Laser Phys. 22, 1744 (2012).
[CrossRef]

Mashinsky, V. M.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur’yanov, V. F. Khopin, and M. V. Yashkov, Quantum Electron. 34, 695 (2004).
[CrossRef]

Medvedkov, O. I.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur’yanov, V. F. Khopin, and M. V. Yashkov, Quantum Electron. 34, 695 (2004).
[CrossRef]

V. I. Karpov, E. M. Dianov, V. M. Paramonov, O. I. Medvedkov, M. M. Bubnov, S. L. Semyonov, S. A. Vasiliev, V. N. Protopopov, O. N. Egorova, V. F. Hopin, A. N. Guryanov, M. P. Bachynski, and W. R. L. Clements, Opt. Lett. 24, 887 (1999).
[CrossRef]

Melkumov, M. A.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur’yanov, V. F. Khopin, and M. V. Yashkov, Quantum Electron. 34, 695 (2004).
[CrossRef]

Messaddeq, Y.

Monro, T. M.

Neustruev, V. B.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur’yanov, V. F. Khopin, and M. V. Yashkov, Quantum Electron. 34, 695 (2004).
[CrossRef]

Paramonov, V. M.

Protopopov, V. N.

Sanghera, J.

Sanghera, J. S.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, IEEE J. Sel. Top. Quantum Electron. 15, 114 (2009).
[CrossRef]

Semyonov, S. L.

Shaw, L.

Shaw, L. B.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, IEEE J. Sel. Top. Quantum Electron. 15, 114 (2009).
[CrossRef]

Shubin, A. V.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur’yanov, V. F. Khopin, and M. V. Yashkov, Quantum Electron. 34, 695 (2004).
[CrossRef]

Stolen, R. H.

R. H. Stolen, A. R. Tynes, and E. P. Ippen, Appl. Phys. Lett. 20, 62 (1972).
[CrossRef]

Taylor, L. R.

Thielen, P.

Tynes, A. R.

R. H. Stolen, A. R. Tynes, and E. P. Ippen, Appl. Phys. Lett. 20, 62 (1972).
[CrossRef]

Vallée, R.

Vasiliev, S. A.

Wang, X.

P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. Liu, Laser Phys. 22, 1744 (2012).
[CrossRef]

White, R. T.

Yashkov, M. V.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur’yanov, V. F. Khopin, and M. V. Yashkov, Quantum Electron. 34, 695 (2004).
[CrossRef]

Zhou, P.

P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. Liu, Laser Phys. 22, 1744 (2012).
[CrossRef]

Appl. Phys. Lett.

R. H. Stolen, A. R. Tynes, and E. P. Ippen, Appl. Phys. Lett. 20, 62 (1972).
[CrossRef]

S. D. Jackson and G. Anzueto-Sánchez, Appl. Phys. Lett. 88, 221106 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, IEEE J. Sel. Top. Quantum Electron. 15, 114 (2009).
[CrossRef]

Laser Phys.

P. Zhou, X. Wang, Y. Ma, H. Lü, and Z. Liu, Laser Phys. 22, 1744 (2012).
[CrossRef]

Nat. Photonics

S. D. Jackson, Nat. Photonics 6, 423 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Quantum Electron.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur’yanov, V. F. Khopin, and M. V. Yashkov, Quantum Electron. 34, 695 (2004).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

D. Faucher, N. Caron, M. Bernier, and R. Vallée, in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (OSA, 2012), paper FTh4A.6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup of the As2S3-based 3.34 μm RFL. LPF, long-pass filter; FBG1, Stokes cavity high reflector (HR); FBG2, Stokes cavity low reflector (LR); FBG3, residual pump high reflector (HR).

Fig. 2.
Fig. 2.

Transmission spectra of the FBGs forming the RFL cavity (red and green curves) along with the output spectra of both the 3 μm pump laser and the 3.34 μm RFL (blue curves) when operated at maximum launched peak pump power of 2.6 W.

Fig. 3.
Fig. 3.

Launched pump pulse (blue) and resulting RFL output pulse (green) at maximum launched pump power in QCW operation at 20 Hz and a duty-cycle of 10%.

Fig. 4.
Fig. 4.

Output Stokes average power (left y axis) and corresponding Stokes peak power (right y axis) as a function of the 3 μm launched pump average power when operated in the QCW regime at 20 Hz and 10% duty-cycle.

Metrics