Abstract

We demonstrate a Tm-doped fiber laser system producing 300fs pulses with 1 μJ energy, corresponding to peak powers greater than 3 MW. Pulses of 150 fs with 30 nm spectral bandwidth and 3 nJ pulse energy are generated in a Raman-soliton self-frequency shift amplifier, then stretched to 160ps using a chirped Bragg grating. The 60 MHz oscillator repetition rate is reduced to 100 kHz using an electro-optic modulator. After a single-mode fiber preamplifier and a large-mode-area fiber power amplifier, pulses were compressed using a folded Treacy grating setup to below 500 fs with up to 1 μJ pulse energy. To the best of our knowledge, this is the highest energy yet demonstrated as well as the first demonstration of peak powers exceeding 1 MW from a Tm:fiber laser system.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. E. Nelson, E. P. Ippen, and H. A. Haus, Appl. Phys. Lett. 67, 19 (1995).
    [CrossRef]
  2. M. Engelbrecht, F. Haxsen, and A. Ruehl, Opt. Lett. 33, 690 (2008).
    [CrossRef]
  3. M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, Opt. Lett. 33, 1336 (2008).
    [CrossRef]
  4. S. Kivisto and T. Haklinen, IEEE Photonics Technol. Lett. 19, 934 (2007).
    [CrossRef]
  5. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, I. Hartl, M. Fermann, and P. G. Schunemann, Opt. Express 20, 7046 (2012).
    [CrossRef]
  6. F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, Opt. Lett. 35, 2991 (2010).
    [CrossRef]
  7. L.-M. Yang, P. Wan, V. Protopopov, and J. Liu, Opt. Express 20, 5683 (2012).
    [CrossRef]
  8. G. Imeshev and M. Fermann, Opt. Express 13, 7424 (2005).
    [CrossRef]
  9. R. A. Sims, P. Kadwani, H. Ebendorff-Heidepriem, L. Shah, T. M. Monro, and M. Richardson, “Chirped pulse amplification in single mode Tm:fiber using a chirped Bragg grating,” Appl. Phys. B (to be published).
  10. P. Kadwani, C. Jollivet, R. A. Sims, A. Schülzgen, L. Shah, and M. Richardson, Opt. Express 20, 24295 (2012).
    [CrossRef]

2012 (3)

2010 (1)

2008 (2)

2007 (1)

S. Kivisto and T. Haklinen, IEEE Photonics Technol. Lett. 19, 934 (2007).
[CrossRef]

2005 (1)

1995 (1)

L. E. Nelson, E. P. Ippen, and H. A. Haus, Appl. Phys. Lett. 67, 19 (1995).
[CrossRef]

Byer, R. L.

Chernov, A. I.

Dianov, E. M.

Ebendorff-Heidepriem, H.

R. A. Sims, P. Kadwani, H. Ebendorff-Heidepriem, L. Shah, T. M. Monro, and M. Richardson, “Chirped pulse amplification in single mode Tm:fiber using a chirped Bragg grating,” Appl. Phys. B (to be published).

Engelbrecht, M.

Fermann, M.

Haklinen, T.

S. Kivisto and T. Haklinen, IEEE Photonics Technol. Lett. 19, 934 (2007).
[CrossRef]

Hartl, I.

Haus, H. A.

L. E. Nelson, E. P. Ippen, and H. A. Haus, Appl. Phys. Lett. 67, 19 (1995).
[CrossRef]

Haxsen, F.

Imeshev, G.

Ippen, E. P.

L. E. Nelson, E. P. Ippen, and H. A. Haus, Appl. Phys. Lett. 67, 19 (1995).
[CrossRef]

Jollivet, C.

Kadwani, P.

P. Kadwani, C. Jollivet, R. A. Sims, A. Schülzgen, L. Shah, and M. Richardson, Opt. Express 20, 24295 (2012).
[CrossRef]

R. A. Sims, P. Kadwani, H. Ebendorff-Heidepriem, L. Shah, T. M. Monro, and M. Richardson, “Chirped pulse amplification in single mode Tm:fiber using a chirped Bragg grating,” Appl. Phys. B (to be published).

Kivisto, S.

S. Kivisto and T. Haklinen, IEEE Photonics Technol. Lett. 19, 934 (2007).
[CrossRef]

Konov, V. I.

Kracht, D.

Leindecker, N.

Liu, J.

Lobach, A. S.

Marandi, A.

Monro, T. M.

R. A. Sims, P. Kadwani, H. Ebendorff-Heidepriem, L. Shah, T. M. Monro, and M. Richardson, “Chirped pulse amplification in single mode Tm:fiber using a chirped Bragg grating,” Appl. Phys. B (to be published).

Morgner, U.

Nelson, L. E.

L. E. Nelson, E. P. Ippen, and H. A. Haus, Appl. Phys. Lett. 67, 19 (1995).
[CrossRef]

Neumann, J.

Obraztsova, E. D.

Protopopov, V.

Richardson, M.

P. Kadwani, C. Jollivet, R. A. Sims, A. Schülzgen, L. Shah, and M. Richardson, Opt. Express 20, 24295 (2012).
[CrossRef]

R. A. Sims, P. Kadwani, H. Ebendorff-Heidepriem, L. Shah, T. M. Monro, and M. Richardson, “Chirped pulse amplification in single mode Tm:fiber using a chirped Bragg grating,” Appl. Phys. B (to be published).

Ruehl, A.

Schülzgen, A.

Schunemann, P. G.

Shah, L.

P. Kadwani, C. Jollivet, R. A. Sims, A. Schülzgen, L. Shah, and M. Richardson, Opt. Express 20, 24295 (2012).
[CrossRef]

R. A. Sims, P. Kadwani, H. Ebendorff-Heidepriem, L. Shah, T. M. Monro, and M. Richardson, “Chirped pulse amplification in single mode Tm:fiber using a chirped Bragg grating,” Appl. Phys. B (to be published).

Sims, R. A.

P. Kadwani, C. Jollivet, R. A. Sims, A. Schülzgen, L. Shah, and M. Richardson, Opt. Express 20, 24295 (2012).
[CrossRef]

R. A. Sims, P. Kadwani, H. Ebendorff-Heidepriem, L. Shah, T. M. Monro, and M. Richardson, “Chirped pulse amplification in single mode Tm:fiber using a chirped Bragg grating,” Appl. Phys. B (to be published).

Solodyankin, M. A.

Tausenev, A. V.

Vodopyanov, K. L.

Wan, P.

Wandt, D.

Yang, L.-M.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the CPA system.

Fig. 2.
Fig. 2.

Compressed pulse energy as a function of launched pump power.

Fig. 3.
Fig. 3.

Interferometric autocorrelation of pulses at 1.4 μJ compressed pulse energy. The 1.4 μJ takes into account the energy of the pulse extending outside the 300 fs peak.

Fig. 4.
Fig. 4.

(a) OSA traces before spectral filtering of ASE at 0.14 and 0.68 μJ energies. (b) OSA traces of both the logarithmic (black curve) and linear (red curve) scale for spectrally filtered pulses after the compressor operating at 1.4 μJ. The inset is the beam image from the LMA amplifier.

Fig. 5.
Fig. 5.

Schematic of the system following the single-mode preamplifier and comparing the OSA traces after each splice. MMI occurs after the MFA, which increases after the 25/400 fiber.

Metrics