Abstract

The effective medium approximation is used to determine the optical constants of novel silver (Ag)/indium-tin oxide (ITO) multilayer nanopillar structures within the 300–800 nm wavelength range. The structures are modeled as inclusions in air with the pillar volume fraction at 42.4%, agreeing with SEM images of the sample. The simulated reflection intensity of the nanopillars is much less than that of the planar reference sample and is a result of the small difference between the refractive index of the top effective medium layer and that of air. Furthermore, the minimum in the reflection at around 450 nm in the nanostructured sample is evidence of surface plasmon enhancement, indicating suitability for plasmonic applications. The simulated Brewster angle decreases in the pillar region, which is an indication of smaller effective refractive index.

© 2013 Optical Society of America

Full Article  |  PDF Article
Related Articles
Total internal reflection ellipsometry: principles and applications

Hans Arwin, Michal Poksinski, and Knut Johansen
Appl. Opt. 43(15) 3028-3036 (2004)

Characterization of nanostructured GaSb: comparison between large-area optical and local direct microscopic techniques

I. S. Nerbø, M. Kildemo, S. Le Roy, I. Simonsen, E. Søndergård, L. Holt, and J. C. Walmsley
Appl. Opt. 47(28) 5130-5139 (2008)

Nanorod-mediated surface plasmon resonance sensor based on effective medium theory

Junxue Fu, Bosoon Park, and Yiping Zhao
Appl. Opt. 48(23) 4637-4649 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription